• Title/Summary/Keyword: current-mode circuits

Search Result 182, Processing Time 0.023 seconds

A Current-Mode Multi-Valued Logic Interface Circuits for LCD System (LCD 시스템을 위한 Current-Mode Multi-Valued Logic 인터페이스 회로)

  • Hwang, Bo-Hyoun;Shin, In-Ho;Lee, Tae-Hee;Choi, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.84-89
    • /
    • 2013
  • In this paper, we propose interface circuits for reducing power consumption and EMI when sequences of data from LCD controller to LCD driver IC by transmitting two bit data during one clock period. The proposed circuits are operated in current mode, which is different from conventional voltage-mode signaling techniques, and also employ threshold technique of Modified-LVDS(Low Voltage Differential Signaling) method. We have simulated the proposed circuits using H-SPICE tool for performance analysis of the proposed method. The simulation results show that the proposed circuits provide a faster transmission speed and stronger noise immunity than the conventional LVDS circuits. It might be suitable for the real-time transmission of huge image data in LCD system.

Design and Analysis of Current Mode Low Temperature Polysilicon TFT Inverter/Buffer

  • Lee, Joon-Chang;Jeong, Ju-Young
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.11-15
    • /
    • 2005
  • We propose a current mode logic circuit design method for LTPS TFT for enhancing circuit operating speed. Current mode inverter/buffers with passive resistive load had been designed and fabricated. Measurement results indicated that the smaller logic swing of the current mode allowed significantly faster operation than the static CMOS. In order to reduce the chip size, both all pTFT and all nTFT active load current mode inverter/buffer had been designed and analyzed by HSPICE simulation. Even though the active load current mode circuits were inferior to the passive load circuits, it was superior to static CMOS gates.

Quadrature Oscillators with Grounded Capacitors and Resistors Using FDCCIIs

  • Horng, Jiun-Wei;Hou, Chun-Li;Chang, Chun-Ming;Chou, Hung-Pin;Lin, Chun-Ta;Wen, Yao-Hsin
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.486-494
    • /
    • 2006
  • Two current-mode and/or voltage-mode quadrature oscillator circuits each using one fully-differential second-generation current conveyor (FDCCII), two grounded capacitors, and two (or three) grounded resistors are presented. In the proposed circuits, the current-mode quadrature signals have the advantage of high-output impedance. The oscillation conditions and oscillation frequencies are orthogonally (or independently) controllable. The current-mode and voltage-mode quadrature signals can be simultaneously obtained from the second proposed circuit. The use of only grounded capacitors and resistors makes the proposed circuits ideal for integrated circuit implementation. Simulation results are also included.

  • PDF

Building Blocks for Current-Mode Implementation of VLSI Fuzzy Microcontrollers

  • Huerats, J.L.;Sanchez-Solano, S.;Baturone, I.;Barriga, A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.929-932
    • /
    • 1993
  • A fuzzy microcontroller is presented implementing a simplified inference mechanism. Fuzzification, rule composition and defuzzification are carried out by means of (basically) analog current-mode CMOS circuits operating in strong inversion. Also a voltage interface is provided with the external world. Combining analog and digital techniques allow a programming capability.

  • PDF

(Implementation of Current-Mode CMOS Multiple-Valued Logic Circuits) (전류 모드 CMOS 다치 논리 회로의 구현)

  • Seong, Hyeon-Gyeong;Han, Yeong-Hwan;Sim, Jae-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.191-200
    • /
    • 2002
  • In this paper, we present the method transforming the interval functions into the truncated difference functions for multi-variable multi-valued functions and implementing the truncated difference functions to the multiple valued logic circuits with uniform patterns using the current mirror circuits and the inhibit circuits by current-mode CMOS. Also, we apply the presented methods to the implementation of circuits for additive truth table of 2-variable 4-valued MOD(4) and multiplicative truth table of 2-variable 4-valued finite fields GF(4). These circuits are simulated under 2${\mu}{\textrm}{m}$ CMOS standard technology, 15$mutextrm{A}$ unit current, and 3.3V power supply voltage using PSpice. The simulation results have shown the satisfying current characteristics. Both implemented circuits using current-mode CMOS have the uniform Patterns and the regularity of interconnection. Also, it is expansible for the variables of multiple valued logic functions and are suitable for VLSI implementation.

The Optimization of Current Mode CMOS Multiple-Valued Logic Circuits (전류구동 CMOS 다치 논리 회로설계 최적화연구)

  • Choi, Jai-Sock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.134-142
    • /
    • 2005
  • The implementation of Multiple-Valued Logic(MVL) based on Current-Mode CMOS Logic(CMCL) circuits has recently been achieved. In this paper, four-valued Unary Multiple-Valued logic functions are synthesized using current-mode CMOS logic circuits. We properly make use of the fact that the CMCL addition of logic values represented using discrete current values can be performed at no cost and that negative logic values are readily available via reversing the direction of current flow. A synthesis process for CMCL circuits is based upon a logically complete set of basic elements. Proposed algorithm results in less expensive realization than those achieved using existing techniques in terms of the number of transistors needed. As an alternative to the cost-table techniques Universal Unary Programmable Circuit (UUPC) for a unary function is also proposed.

  • PDF

Design of a Full-Adder Using Current-Mode Multiple-Valued Logic CMOS Circuits (전류 모드 CMOS 다치 논리 회로를 이용한 전가산기 설계)

  • Won, Young-Uk;Kim, Jong-Soo;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.275-278
    • /
    • 2003
  • This paper presents a full-adder using current-mode multiple valued logic CMOS circuits. This paper compares propagation delay, power consumption, and PDP(Power Delay Product) compared with conventional circuit. This circuit is designed with a samsung 0.35um n-well 2-poly 3-metal CMOS technology. Designed circuits are simulated and verified by HSPICE. Proposed full-adder has 2.25 ns of propagation delay and 0.21 mW of power consumption.

  • PDF

Implementation of Ternary Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.142-144
    • /
    • 2006
  • In this paper, the Ternary adder and multiplier are implemented by current-mode CMOS. First, we implement the ternary T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second, we implement the circuits to be realized 2-variable ternary addition table and multiplication table over finite fields GF(3) with the ternary T-gates. Finally, these operation circuits are simulated by Spice under $1.5{\mu}m$ CMOS standard technology, $1.5{\mu}m$ unit current, and 3.3V VDD voltage. The simulation results have shown the satisfying current characteristics. The ternary adder and multiplier implemented by current-mode CMOS are simple and regular for wire routing and possess the property of modularity with cell array.

  • PDF

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

Design of Multiple Valued Logic Circuits with ROM Type using Current Mode CMOS (전류방식 CMOS에 의한 ROM 형의 다치 논리 회로 설계)

  • 최재석;성현경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.55-61
    • /
    • 1994
  • The multiple valued logic(MVL) circuit with ROM type using current mode CMOS is presented in this paper. This circuit is composed of the multiple valued-to-binary(MV/B) decoder and the selection circuit. The MV/B decoder decodes the single input multiple valued signal to N binary signal, and the selection circuits is composed N$\times$N array of the selecion cells with ROM types. The selection cell is realized with the current mirror circuits and the inhibit circuits. The presented circuit is suitable for designing the circuit of MVL functions with independent variables, and reduces the number of selection cells for designing the circuit of symmetric MVL functions as many as {($N^2$-N)/2}+N. This circuit possess features of simplicity. expansibility for array and regularity, modularity for the wire routing. Also, it is suitable for VLSI implementation.

  • PDF