• 제목/요약/키워드: cross beam

검색결과 1,215건 처리시간 0.034초

강재의 단면형상에 따른 내화피복두께 산정 연구 (Study on the Determination of Fire Protection Thickness based on Section Factor)

  • 정청운;지남용;권인규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.139-142
    • /
    • 2003
  • Traditionally, the thickness of fire protection materials of structural elements such as beam and column have been decided by fire test using the predominant steel section of $H-300{\times}300{\times}10{\times}15$ for column and $H-400{\times}200{\times}8{\times}13$ for beam in Korea. But this way of determination of fire protection thickness yields very unduly results. Because the temperature-increment rate of structural steel elements depends mainly on magnitude of their cross-areas. In general, the thicker size of cross-areas for structural elements, the lower temperature shows up. It had already proved that the fire protection thickness only depends on the size of cross-areas and the fire protection method for three-fide or four-side exposed conditions in European countries, the United State of America and so on. To demonstrate there would be differences among various cross-areas for structural elements, we conducted several fire tests with full-scale specimens of beams and columns. For the determination of critical temperature for steel section when the fire resistant performance is needed to be decided, we conducted with a loaded fire test for beam and column, respectively. The small column in 1.0 meter length and beam in 1.5 meter length were used in order to deprive the rational fire protection thickness of structural elements such as beam and column, respectively. After test, we could obtain there were significant temperature lass between higher cross-areas and lower cross-areas. The critical temperature of steel as a criterion is used 538$^{\circ}C$ for column and 593$^{\circ}C$ for beam which is from ASTM E 119 because we don't make provisions as critical temperature by elements. We could consider that the best way of determination of fire protection thickness is using the following multi-regression equation which was deprived from several fire tests using the concept of section factor, FR(column) = 0.17 +5191.49t A/Hp + 40.77t, FR(beam) = 0.25 +6899.31t A/Hp + 32.60t(where, FR means fire resistant time, t means thickness, A means cross-area and Hp means heated parameter).

  • PDF

Elastic solution of a curved beam made of functionally graded materials with different cross sections

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.659-672
    • /
    • 2015
  • This research deals with the analytical solution of a curved beam with different shapes made of functionally graded materials (FGM's). It was assumed that modulus of elasticity is graded along the thickness direction of curved beam based on a power function. The beam was loaded under pure bending. Using the linear theory of elasticity, the general relation for radial distribution of radial and circumferential stresses of arbitrary cross section was derived. The effect of nonhomogeneity was considered on the radial distribution of circumferential stress. This behavior can be investigated for positive and negative values of nonhomogeneity index. The novelty of this study is application of the obtained results for different combination of material properties and cross sections. Achieved results indicate that employing different nonhomogeneity index and selection of various types of cross sections (rectangular, triangular or circular) can control the distribution of radial and circumferential stresses as designer want and propose new solutions by these options. Increasing the nonhomogeneity index for positive or negative values of nonhomogeneity index and for various cross sections presents different behaviors along the thickness direction. In order to validate the present research, the results of this research can be compared with previous result for reachable cross sections and non homogeneity index.

임의의 단면을 갖는 보의 전단중심 결정에 관한 연구 (A Study on Determination of Shear Center of Beam Having Arbitrary Cross Section)

  • 오택열;변창환;유용석;권영하
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.93-98
    • /
    • 2002
  • It is important to determinate the shear center of beam having arbitrary cross-section in structures. In this study, we have introduced the determination of shear center that gets the equivalent stiffness matrix representing arbitrary cross section of beam and applies energy equivalence theory. This method shows the results of applying on examples that we know the exact and approximate solution of open and cross section of beam. This study also compares with the shear center of composite rotor blade got by the experiment and by the suggested method.

A Study on Determination of Shear Center of Beam with Arbitrary Cross Section

  • Oh, Teak-Yul;Byun, Chang-Hwan;Known, Young-Ha
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.39-44
    • /
    • 2003
  • It is important to find the shear center of beam with arbitrary cross-section in structures. In this study, it is introduced to determine the shear center that gets the equivalent stiffness matrix representing arbitrary cross section of beam and applies concepts of equivalent energy. This method shows the results of applying on examples that the exact and approximate solution of open and cross section of beam is known. The shear center of composite rotor blade by the experiment and by the suggested method was compared in this study.

LMTT용 셔틀 카의 프레임 강도 및 강성에 미치는 크로스 빔의 영향 (The Effect of Cross Beam on the strength and Stiffness of the Frame in Shuttle Car for LMTT)

  • 임종현;한근조;이권순;한동섭;심재준;이성욱;전영환
    • 한국항해항만학회지
    • /
    • 제29권1호
    • /
    • pp.77-82
    • /
    • 2005
  • 컨테이너 무역 규모가 매년 증가함에 따라 항만 환경이 급격히 변화하고 있다. 이러한 항만의 변화에 성공적으로 대처하기 위해 차세대 항만하역시스템인 LMTT(Linear Motor-based Transfer Technology)의 연구가 진행되고 있다. LMTT용 셔틀 카의 프레임부는 내부 빔, 내부 빔, 크로스 빔으로 구성되어 있으며, 본 연구에서는 프레임을 설계하기 위하여 크로스 빔의 개수, 하중 재하 위치 및 내부 빔의 위치에 따른 외부 빔과의 거리비 등이 프레임의 강도 및 강성에 미치는 영향을 유한요소 해석을 통하여 하중이 외부 빔과 내부 빔에 동시에 작용하고 크로스 빔이 5개일 때가 최적의 조건이라는 결론을 얻을 수 있었다.

Cellulose-based carbon fibers prepared using electron-beam stabilization

  • Kim, Min Il;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.56-61
    • /
    • 2016
  • Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800℃ for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

다단 티모센코 원형단면봉의 연속 고유모우드 (Mode Shape of Timoshenko Beam Having Different Circular Cross-Sections)

  • 전오성
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.118-123
    • /
    • 1997
  • The study suggests a method to analyze the vibration of the multi-stepped beam having the different circular cross-sections. The rotatory inertia, the shear deformation and the torque applied at both ends of the beam are considered in the governing equation. The complex displacement and the variable separation are introduced to derive the solution of the equation of each uniform beam element having constant cross-section. Then boundary conditions are applied to solve the total system. This method uses the mathematically exact solutions unlike numerical method such as the finite element method in solving the problem having the simultaneous differential equations of Timoshenko beam theory. the natural frequencies and the corresponding mode shapes are precise, especially the mode shapes are continuous.

  • PDF

Variable kinematic beam elements for electro-mechanical analysis

  • Miglioretti, F.;Carrera, E.;Petrolo, M.
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.517-546
    • /
    • 2014
  • This paper proposes a refined electro-mechanical beam formulation. Lagrange-type polynomials are used to interpolate the unknowns over the beam cross section. Three- (L3), four- (L4), and nine-point(L9) polynomials are considered which lead to linear, bi-linear, and quadratic displacement field approximations over the beam cross-section. Finite elements are obtained by employing the principle of virtual displacements in conjunction with the Carrera Unified Formulation (CUF). The finite element matrices and vectors are expressed in terms of fundamental nuclei whose forms do not depend on the assumptions made. Additional refined beam models are implemented by introducing further discretizations, over the beam cross-section. Some assessments from bibliography have been solved in order to validate the electro-mechanical formulation. The investigations conducted show that the present formulation is able to detect the electro-mechanical interaction.

Band Plate로 연결된 RC기둥-철골보 접합부의 이력거동에 관한 실험연구 (Structural Behavior of the RC Column-Steel Beam Joint with Band Plate)

  • 서수연;이원호;이리형;윤승조
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.213-221
    • /
    • 2002
  • This paper presents the experimental result of Reinforced Concrete column-steel beam joint connected by Band Plates(BP). Main parameters in the test are the shape of BP and thickness of plate. Ten interior and exterior RC column-steel beam joint specimens are designed. Cyclic loads are applied to the beam end of eight specimens (four interior specimens and four exterior specimens). To evaluate the cyclic effect, monotonic loads are acted for two specimens. All specimen showed similar failure pattern such as the plate of BP get torn after the large deformation. Even though the specimen with double cross type BP has lower strength than the specimen with single cross type BP, the energy dissipation capacity of the specimen turned out high. Thus, provided the strength of joint with double cross type to be designed to have suitable strength by increasing the thickness of plate, the joint system may show higher seismic capacity.