Browse > Article
http://dx.doi.org/10.12989/sss.2014.13.4.517

Variable kinematic beam elements for electro-mechanical analysis  

Miglioretti, F. (Department of mechanical and aerospace engineering, Politecnico di Torino, Corso Duca degli Abruzzi)
Carrera, E. (Department of mechanical and aerospace engineering, Politecnico di Torino, Corso Duca degli Abruzzi)
Petrolo, M. (Department of mechanical and aerospace engineering, Politecnico di Torino, Corso Duca degli Abruzzi)
Publication Information
Smart Structures and Systems / v.13, no.4, 2014 , pp. 517-546 More about this Journal
Abstract
This paper proposes a refined electro-mechanical beam formulation. Lagrange-type polynomials are used to interpolate the unknowns over the beam cross section. Three- (L3), four- (L4), and nine-point(L9) polynomials are considered which lead to linear, bi-linear, and quadratic displacement field approximations over the beam cross-section. Finite elements are obtained by employing the principle of virtual displacements in conjunction with the Carrera Unified Formulation (CUF). The finite element matrices and vectors are expressed in terms of fundamental nuclei whose forms do not depend on the assumptions made. Additional refined beam models are implemented by introducing further discretizations, over the beam cross-section. Some assessments from bibliography have been solved in order to validate the electro-mechanical formulation. The investigations conducted show that the present formulation is able to detect the electro-mechanical interaction.
Keywords
CUF; higher-order formulation; electro-mechanical formulation; finite elements;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bathe, K. (1996), Finite element procedure, Prentice hall.
2 Beheshti-Aval, S., Lezgy-Nazargah, M., Vidal, P. and Polit, O. (2011), "A refined sinusfinite element model for the analysis of piezoelectric-laminated beams", J. Intel. Mat. Syst. Str., 22(3), 203-210.   DOI
3 Carrera, E. (1997), "An improved Reissner-Mindlin-Type model for the electromechanical analysis of multilayered plates including piezo-layers" J. Intel. Mat. Syst. Str., 8(3)232-248.
4 Carrera, E. and Petrolo, M. (2011), "On the effectiveness of higher-order terms in refined beam theories", J. Appl. Mech. - T ASME, 7 (2), 021013, doi:10.1115/1.4002207.   DOI   ScienceOn
5 Carrera, E. and Boscolo, M. (2006), "Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates", Int. J. Numer. Meth. Eng., 70(10), 1135-1181.
6 Carrera, E. and Giunta, G. (2010), "Refined beam theories based on a unified formulation", Int. J. Appl. Mech., 2(1), 117-143.   DOI
7 Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88(5-6), 283-293.   DOI   ScienceOn
8 Carrera, E., Biscretto, S. and Nali, P. (2011), Plates and shells for smart structures, JohnWiley and sons.
9 Carrera, E. and Petrolo, M. (2012), "Refined beam elements with only displacement variables and plate/shell capabilities", Meccanica, 47(3), 537-556.   DOI
10 Carrera, E., Petrolo, M. and Nali, P. (2011), "Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section", Shock Vib., 18(3), 485-502.   DOI
11 Carrera, E., Petrolo, M. and Varello, A. (2012a), "Advanced beam formulations for free vibrations analysis of conventional and joined wings", J. Aerospace Eng., 25(2), 282-293.   DOI
12 Carrera, E., Zappino, E. and Petrolo, M. (2012b), "Advanced elements for the static analysis of beams with compact and bridge-like sections", J. Struct. Eng. - ASCE, 56, 49-61.
13 Caruso, G., Galeani, S. and Menini, L. (2003), "Active vibration control of an elastic plate using multiple piezoelectric sensors and actuators", Simul. Model. Pract. Th., 11(5-6), 403-419.   DOI   ScienceOn
14 Crawley, E. and Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10), 1373-1385.   DOI   ScienceOn
15 Dong, X.J., Meng, G. and Peng, J.C. (2006), "Vibration control of piezoelectric actuators smart structures based on system identification technique: numerical simulation and experimental study", J. Sound Vib., 297(3-5), 680-693.   DOI   ScienceOn
16 Krommer, M. (2003), "Piezoelestic vibrations of composite Reissner-Mindlin-type plates", J. Sound Vib., 263(4), 871-891.   DOI   ScienceOn
17 Elshafei, M. and Alraiess, F. (2013), "Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory", Smart Mater. Struct., 22(3), doi:10.1088/0964-1726/22/3/035006.   DOI   ScienceOn
18 Hwang, W. and Park, H. (1993), "Finite element modelling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937.   DOI   ScienceOn
19 Kim, T.W. and Kim, J.H. (2005), "Optimal distribution of an active layer for transient vibration control of an flexible plates", Smart Mater. Struct., 14(5), 904-916.   DOI   ScienceOn
20 Kumar, K. and Narayanan, S. (2007), "The optimal location of piezolectric actuators and sensors for vibration controls of plate", Smart Mater. Struct., 16(6), 2680-2691.   DOI   ScienceOn
21 Kusculuoglu, Z.K. and Royston, T.J. (2005), "Finite element formulation for composite plates with piezoceramic layers for optimal vibration control applications", Smart Mater. Struct., 14(6), 1139-1153.   DOI   ScienceOn
22 Marinkovic, D., Koppe, H. and Gabber, H. (2007), "Accurate modelling of the electric field within piezoelectric layers for active composite structures", J. Intel. Mat. Syst. Str., 18(5), 503-513.   DOI
23 Yasin, M.Y., Ahmad, N. and Alam, M.N. (2010), "Finite element analysis of actively controlled smart plate with patched actuators and sensors", Latin Am. J. Solids Struct., 7, 227-247.   DOI
24 Yocum, M. and Abramovich, H. (2002), "Static behaviour of piezoelectric actuated beams", Comput. Struct., 80(23), 1797-1808.   DOI   ScienceOn
25 Zhou, X., Chattopadhyay, A. and Gu, H. (2000), "Dynamic response of smart composites using a coupled thermo-piezoelectric-mechanical model", AIAA J., 38(10), 1939-1948.   DOI   ScienceOn
26 Xu, S. and Koko, T. (2004), "Finite element analysis and design of actively a controlled piezoelectric smart structure", Finite Elem. Anal. Des., 40(3), 241-262.   DOI   ScienceOn
27 Liu, G., Dai, K. and Lim, K. (2004), "Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using radial point interpolation method", Smart Mater. Struct., 13(6), 1438-1447.   DOI   ScienceOn
28 Moita, J., Soares, C. and Soares, C. (2005), "Active control of forced vibration in adaptive structures using a higher order model", Compos. Struct., 71(3-4), 349-355.   DOI   ScienceOn
29 Moitha, J., Correira, I., Soares, C. and Soares, C. (2004), "Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators", Comput. Struct., 82(17-19), 1349-1358.   DOI   ScienceOn
30 Onate, E. ( 2009), Structural analysis with the finite element method: linear statics, Springer.
31 Robbins, D. and Reddy, J. (1991a), "Analysis of piezoelectrically actuated beam using a layer-wise displacements theory", Comput. Struct., 41(2), 265-279.   DOI   ScienceOn
32 Robbins, D. and Reddy, J. (1991b), "Analysis of piezoelectrically actuated beams using a layer-wise displacement theory", Comput. Struct., 41(2), 265-279.   DOI   ScienceOn
33 Sarvanos, D. and Heyliger, P. (1999), "Mechanics and computational models for laminated piezoelectric beams, plate, and shells", Appl. Mech. Rev., 52(10), 305-320.   DOI
34 Tzou, H. and Tseng, C. (1990), "Distributed vibration control and identification of coupled elastic/piezoelectric systems: finite element formulation and applications", Mech. Syst. Signal Pr., 5(3), 215-231.
35 Umesh, K. and Ganguli, R. (2009), "Shape vibration control of smart plate with matrix cracks", Smart Mater. Struct., 18(2), 1-13.
36 Sarvanos, D.A. (1997), "Mixed laminate theory and finite element for smart piezoelectric composite shell structures", AIAA J., 35(8), 1327-1333.   DOI   ScienceOn
37 Tzou, H. and Ye, R. (1996), "Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements", AIAA J., 34(1), 110-115.   DOI
38 Valey, D. and Rao, S. (1994), Two-dimensional finite element modeling of composites with embedded piezoelectrics, Collection Tech. Papers Proc. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. 5, 2629-2633.
39 Vasques, C. and Rodrigues, J. (2006), "Active vibration of smart piezoelectric beams: comparison of classical and optimal feedback control strategies", Comput. Struct., 84(22-23),1459-1470.   DOI   ScienceOn
40 Vidal, P., D'Ottavio, M., Thaier, M. and Polit, O. (2011), "An efficient finite shell element for the static resposne of piezoelectric laminates", J. Intel. Mat. Syst. Struct., 22(7),671.   DOI
41 Bailey, T. and Hubbard, J. (1985), "Distributed piezoelectric polymer active vibration control of a cantilever beam", AIAA J., 8(5), 605-611.
42 Ballhause, D., D'Ottavio, M., Kroplin, B. and Carrera, E. (2005), "A unified formulation to assess multilayered theories for piezoelectric plates", Comput. Struct., 83(15-16), 1217-1235.   DOI   ScienceOn
43 Chee, C., Tong, L. and Steven, G. (1999), "A mixed model for composite beams with piezoelectric actuators and sensors", Smart Mater. Struct., 8(3), 417, doi:10.1088/0964-1726/8/3/313.   DOI
44 Sarvanos, D. and Heyliger, P. (1995), "Coupled layer wise analysis of composite beams with embedded piezoelectric sensors and actuators", J. Intel. Mat. Syst. Str., 6(3), 350-363.   DOI
45 Biscani, F., Nali, P., Belouettar, S. and Carrera, E. (2012), "Coupling of hierarchical piezo-electric plate finite elements via arlequin method", J. Intel. Mat. Syst. Str., 23(7), 749-764.   DOI