• Title/Summary/Keyword: crane system

Search Result 581, Processing Time 0.027 seconds

Vibration Control of Working Booms on Articulated Bridge Inspection Robots (교량검사 굴절로봇 작업붐의 진동제어)

  • Hwang, In-Ho;Lee, Hu-Seok;Park, Young-Hwan;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.178-183
    • /
    • 2008
  • A robot crane truck is being developed by the Bridge Inspection Robot Development Interface(BRIDI) for an automated and/or teleoperated bridge inspection. At the end of the telescoping boom allows the operator to scan the bridge structure under the deck trough the camera. Boom vibration induced by wind and deck movement can cause serious problems in this scanning system. This paper presents a control system to mitigate such vibration of the robot boom In the proposed control system an actuator is installed at the end of the working boom. This control system is studied using a mathematical model analysis with LQ control algorithm and a scaled model test in the laboratory. The study indicates that the proposed system is efficient for the vibration control of the robot booms, thereby demonstrating its immediate applicability in the field.

  • PDF

A Study on the Hoisting Planning System in Highrise Building Construction (초고층 건축공사의 양중계획 시스템에 관한 연구)

  • Kim, Jung-Jin;Choi, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.121-130
    • /
    • 2005
  • A systematic hoisting planning for tower crane is the most important elements in highrise building construction. However without sufficient data, systematic approach, it is not with ease to produce an appropriate planning at the rite. Therefore, this research aims at developing a systematic hoisting planning system in visual graphic with systematic procedure. The result of this research is that developed system on hoisting load calculation, numbers and specification of tower cranes are graphically visualized easily at the site. The study of applying this system to real project proves that it presents a sufficient capability as a useful tool in the hoisting planning of highrise building projects.

Anti-sway Control of Crane System using Time Optimal Control Method (최단시간 제어법을 이용한 크레인의 흔들림 방지제어)

  • 이진우;김상봉
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.23-29
    • /
    • 1997
  • In the control of crane system, the traversing time of the trolley must be reduced as much as possible and the swing must be stopped at the end point. To design the minimum time control system, Pontryagim maximum principle is applied. In order to implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. The overall performance of the closed loop system is evaluated by means of computer simulations and practical experiments in a broad range of working conditions. The effectiveness is proved through the experimental results for the anti-sway control of the load and the position control of trolly. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF

Nonlinear control of underactuated mechanical systems via feedback linearization and energy based Lyapunov function

  • Hong, Keum-Shik;Sohn, Sung-Chul;Yang, Kyung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.77-80
    • /
    • 1996
  • In this paper a nonlinear control strategy via feedback linearization and energy based Lyapunov function for underactuated mechanical systems is investigated. Underactuated mechanical system is a system of which the number of actuators is less than the number of degrees of freedom. Developed algorithm is applied to a crane system of grab operation. Positioning of the trolley as well as swing-up of the pendulum to the up-right position including maintaining the sway angle at some desired degree are demonstrated. Simulations are provided.

  • PDF

The Study on Position Control of Gantry Crane Spreader (갠트리 크레인 스프레더의 웨치제어에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.307-307
    • /
    • 2000
  • The swing motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to design implementable stabilizing controllers that minimize the swing motion of spreader in precise position control. The dynamic equations related to trolley, rope, and spreader are derived. For constitute a similar actual system, we introduced a conception of spring and damper in the connector. It is located between the trolley and link that is used in stead of rope. We derived dynamic equation by appliance that friction and external disturbance are occurred to the connector. We constituted of position servo system and velocity servo system for the control of position and velocity of the trolley and constituted of lag compensator system for the control of sway of the spreader. And we will show an effect of the proposed system in this research finally.

  • PDF

Nonlinear Sliding mode Control of Overhead Crane System (천정 크레인 시스템의 비선형 슬라이딩 모드 제어)

  • Kim, Do-Woo;Yoon, Ji-Sup;Park, Byung-Suk;Yang, Hai-Won;Kim, Hong-Phil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.526-529
    • /
    • 1998
  • In this paper, we proposed a nonlinear sliding mode controller to regulate the swinging angle of Overhead Crane System. Roughly speaking, the controller is designed to regulate an output(the swing angle) while providing internal stability. It is difficult to apply many of standard nonlinear control design techniques. In contrast to control that use a command generator and possibly a time-varying feedback, our control law is simple autonomous nonlinear controller. We analyze the stability of the closed-loop system using an $L_2$ Sliding surface conditions approach on a nonlinear feedback linearization of the system about the desired periodic orbit. One can easily extend this approach to analyze the robustness of the control system with respect to disturbances and parameter variations.

  • PDF

Stress Analysis of a Derrick System Cargo Gear (Derrick식 하역설비의 Vector 삼각형을 이용한 응력해석)

  • Min, Byeong-Eon;Koo, Hong
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.2
    • /
    • pp.99-108
    • /
    • 1981
  • As far as ship's cargo handling devicesareconcerned, the derrick system has been used comprehensively in the marine. Even though there are several new devices for ship's cargo gear, such as gantry crane, jib crane adn self unloader, the derrick system, with its improved rigging method, still retains its utmost reputations among ship's owners. Therefore the method of calculating the system's militating stresses in the course of cargo operation needs to be more convenient and analytical. Here the author attempts to introduce the calculating method of stresses by means of vector analysis. The calculating method is able to analyze the stresses acting in every part of the cargo gear systems, such as union purchase, slewing or its modified system.

  • PDF

Command Shaping Control for Limiting the Transient Sway Angle of Crane Systems

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • A modified command shaping control to reduce residual vibrations at a target position and to limit the sway angle of the payload during traveling for container crane systems is investigated. When the maneuvering time is minimized, a large transient amplitude and steady state oscillations may occur inherently. Since a large swing of the payload during the transfer is dangerous, the control objective is to transfer a payload to the desired place as quickly as possible while limiting the swing angle of the payload during the transfer. The conventional shapers have been enhanced by adding one more constraint to limit intermediate sway angles of the payload. The developed method is shown to be more effective than other conventional shapers for prevention of an excessive transient sway. Computer simulation results are provided.

Sway Control of c Container Crane (Part II): Regulation of the Pendulum Sway through Patternizing Trolley Moving Velocity (컨테이너 크레인의 흔들림 제어 (Part II): 트롤리 주행속도 조절을 통한 진자운동의 제어)

  • Hong, Keum-Shik;Sohn, Sung-Chull;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.132-138
    • /
    • 1997
  • Six different types of velocity profiles of trolley movement of a container crane are investigated for the minimal sway angle at the target trolley position. Three velocity patterns which include trapezoidal, stepped and notched-type velocity patterns are obtained assuming constant rope length. The notched type velocity pattern is shown to be derived from the time-optimal bang-bang control. The stepped type velocity pattern can be shown to be derived as bang-off bang control as well. Considering the damping effect due to hoist motion a double stage acceleration pattern is also analyzed. The main objective of the paper is to show how much time-reduction can be obtained among several velocity patterns appearing in the literature.

  • PDF

Vibration Control of the 2 Axial Overhead Crane by Input Shaping Method Using Digital IIR Filter (디지털 IIR 필터를 이용한 입력성형기법에 의한 2축 천정크레인의 진동제어)

  • Noh, Sang-Hyun;Park, Un-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 1999
  • Input shaping technique has been used as a simple method of controlling vibration. With the conventional methods previously proposed by several authors, the frequency range that shows a good performance is restricted. When the designed frequency being different from the natural frequency of a system, the performance of control degrades remarkably. This paper introduced a new technique that uses digital IIR filter to control vibration. This technique has robustness for changing of parameter. In order to prove this we applied input shaping method to 2 axial overhead crane.

  • PDF