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Abstracts

In this paper a nonlinear control strategy via feedback linearization and energy based Lyapunov function for

underactuated mechanical systems is investigated. Underactuated mechanical system is a system of which the number of actuators is

less than the number of degrees of freedom. Developed algorithm is applied to a crane system of grab operation.

Positioning of the

trolley as well as swing-up of the pendulum to the up-right position including maintaining the sway angle at some desired degree are

demonstrated.  Simulations are provided.

Keywords

1. Introduction

Underactuated mechanical system is a system of which the
number of actuators is less than the number of degrees of
freedom. This class of systems includes crane systems,
gymnastic robots such as the Acrobot, the classical cart-pole
system, mobile robot systems in which a manipulator arm is
attached to a mobile platform, a space platform, and in some
undersea vehicles. Further if we include the flexibility of the
joint in the mathematical model, then the flexibility itself
remains as underactuated part of the system dynamics. In the
case that the number of actuators is same with the degrees of
freedom, many different control laws are easily available.

This research was motivated from the automated grab
operation when unloading ships with bulk materials. When the
grab reaches the target (bunker or ship hold), the sway motion
generally needs to be suppressed as in the case of container
crane. However when removing materials remaining at the
comer in the bunker, the grab needs necessarily to swing to
reach there. Further the method in the paper can swing up the
pendulum to the upright position if it is applied a traditional
cart-pendulum system.

The approach in the paper is based on control of energy level
of the sway motion. When the energy is poorly controllable
from the input, the input is instead used to position the trolley.

In this paper, we propose an autonomous nonlinear state
feedback control law to regulate the trolley position as well as
the swinging energy of the pendulum. Namely nonlinear
feedback linearization and energy based Lyapunov function for
stability analysis. The resulting closed-loop system will
possess a stable periodic orbit.

This paper is organized as follows. We illustrate the
equations of motion for the general underactuated mechanical
systems and construct the partial feedback linearization contro]
law following the work of (Spong, 1996) in Section 2. We
apply the nonlinear controller to a crane system of pendulum
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and trolley motion in Section 3, as an example of underactuated
mechanical system. The proposed nonlinear controller is to
regulate the passive joints as well as the active joints and
stability of the controller is also investigated. In Section 4,
simulations are provided.

2. Underactuated Mechanical Systems

Consider an » - degrees of freedom open loop mechanism
with joint variables g',...,g". It is assumed that each joint
has a single degree of freedom and only m < n joints are active,
i.e. the only m joints have ability to move neighboring link and
!I=n-m joints have no actuation. Each joint which is
capable of actuation is called an active joint. The remaining
! = n—m joints with no actuation are called passive joints. A
general underactuated mechanical system is shown in Fig. 1.
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PASSIVE

DOF =4
No. of Actuators = 2

Fig. 1. Schematics of an Underactuated Mechanical System.

After obtaining the equations of motion through the Lagrange
method, we can rearrange equations so that the coordinates for

passive joints are grouped in g eR' and the coordinate for

active joints are grouped in g, € R™. Hence a general



underactuated mechanical system is represented as
Mgy + Mi2G2 +Ci(g.9) + Gi(9) =0 M)
Mgy + Mgy +Ca(9.9) +Ga(g) = f @)
where the vector functions Cj(¢,4) €R'and C,(q,4) eR™
contain Coriolis and centrifugal terms, the vector functions

G,(q9) eR' and G,(q) €eR™ contain gravitational terms,
1 2

and f €R™ represents the input generalized force produced

by the m actuators at the active joints. Hence like
completely controllable robot, the dynamic equations of
My My,

llnder aCtuated System are a]SO Wntten as
}, { }

M(9)§ +C(q.9) +G(q) = Bf

Note that M is a symmetric, positive definite inertia matrix.
For notational simplicity we will henceforth not write the
explicit dependence on ¢ in M,C and G. It
emphasized again that the dynamic of underactuated systems is
represented as standard dynamics of n link robots except that
there is no control input to the first / equations.

The term M1q is an

a

3)

where

g=la1.921", M(q){

is

Now consider the equation (1).

invertible /x / matrix as a consequence of the uniform positive

definiteness of the robot inertia matrix M in (3). Therefore
we may solve for ¢, in equation (1) as

. -1 ..

Gy ==My~ (M134 +Cy +Gy) )

and substitute the resulting expression (4) into (2) to obtain
My, +Cy+Gy = f &)
where the terms A722, 62 and 52 are given by
My = My = My My ™ My,
C, =Cy - My My ™'Cy,
G, =G, - My My ”'Gy.
Note that the m x m matrix }\722 is itself symmetric and

positive definite as shown in (Gu et al., 1993).
A partial feedback linearizing controller can therefore be
defined for equation (5) according to

f=]\722u+62+52 (6)

where u € R™ is an additional control input yet to be defined.
The complete system up to this point may be written as
MG +C + G =-Mqau N
G =u ®)

Since the input-output relation from # to g, in equation

(8) is linear, the active part of equation (2) has been completely
linearized. The complete system therefore has m -vector

relative degree (2,...,2)T (Isidori, 1989) with respect to the
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output g5 . The nonlinear equation (7) now represents the

internal dynamics whose stability has to be investigated.
We first apply a feedback control u as following

u=—kyqy —kagy +k3u 9

where ky, k, and k3 are constant and ¥ is a design

variable. Note that the linear subsystem (8) is asymptotically
stable for # =0. The remaining design problem then is how
to choose the additional term # .  Detailed procedure
including stability will be addressed in the next section through
the example of crane.

In the case of full, or exact, feedback linearization the
control design problem becomes complete once the system is
linearized. However for partial, or input-output, linearization
with asymptotically stable zero dynamics only local stabilization
is achieved. Global or semi-global stability requires further
investigation such as peaking, etc. For the underactuated
systems, the collocated linearization approach above may results
in non-minimum systems having unstable zero dynamics. Then
the second stage control, i.e. the design of the outer loop terms
u in (8), more to point, the choice of # in (9), becomes
nontrivial. In the next section by using explicit expressions for
(1) and (2) a partial feedback linearization is investigated for the
design of u that combines the high gain and energy based
Lyapunov function.

3. Nonlinear Control of a Crane System

Consider a trolley and pendulum system shown in Fig. 2.

d

pendulum 7

Fig. 2. Trolley and Pendulum System.

Using the Lagrange mechanics, the equations of motion with
the assumptions of massless rod and point mass are obtained.

mi% 8 + ml cos@% +mglsin=0 (10)

m1c0599+(M+m)5c'—m15im992 =f an
where f is the external force applied to the trolley and g is

the gravitational acceleration. Note that equations (10) and
(11) are in the form of the underactuated mechanical system (1)
and (2), respectively. Specifically the terms in equations (1)
and (2) correspond to

My =mit, My =M+m,



M12 = M21 =micosd,
Cy=0, Cy =~misin6d?®
Gy =-mglsinf@, G, =0
We now apply the partial feedback linearization control.

Solve the equation (10) for 0 and substitute it into the equation
an.

Then we obtain

(M +msin? 6)%—msin (g cos6+16%) = f (12)
If we take the input to the trolley f as
f = (M +msin® @)u—msin &(16* + g cos6) (13)

where u is the additional contro]l input to be decided as was
introduced in equation (6). Then the resulting system can be

written as

16+ gsinf=—cosBu (14)

X=u (15)
Let u have the form as

u=—kyx, —kyxe +k3ii (16)
where ¥ is a new design variable and x, = x —xg , where
xgz is a desired trolley position which is constant. With the

outer loop term given by (16), the closed loop system becomes
10+ gsinf =k, cosOx, +k, cosOx, —ky cos@u  (17)

(18)

In order to assure the stability, consider the following function.

o +koxp +hyxe = k3u

V(8.,0,x,%) = %m(19)2 +mgl(1~ cos6)

+—;—mlk1k2xez +—;—m1k25ce2 (19)

And let V,; denote the desired energy level of the system to be
regulated, which assumes constant value. For instance if we
want to swing up the pendulum to the up-right position when a
target trolley position is reached, V; = 2mgl will be chosen.
Define V, = V -V,.
to t and by utilizing (17) and (18) yields
V=V, =mlcos80(k,x, +k,%,)*

Then differentiating (19) with respect

+miky (ko %, — cos 08T — mlky2 %,

=Term1 + Term2 ¥ -Term 3
Hence by choosing

(20)

_Jeml , if [Tem2|2 ¢
Term 2
- Term1 .
¥ =~(kyx, ~cOSOOW, +{-——"  if 0<Tem2< ¢
&
Term 1 ,if ~6<Term2<0
| £
21
(20) becomes
V, < —mlks(ky%, —c0s800)2V, —mik;? x,% +|Term 1|
(22)
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Therefore V, >0 as t - .

4. Simulations

The development in Section 3 has been computer simulated.

The following are the data used in the simulations. m=1kg,
I=1m, xXg =3m, 6(0) =0. radian , 6(0)=0,
w, =025, ky=w2, ky=2w,, ky=10, £=003.

When the £ in equation (21), which bounds the magnitude of
Term 2, gets smaller, the control input becomes sharper and
therefore trolley movement gets more abrupt.

5. Conclusion

In this paper we have investigated a nonlinear control for the
underactuated mechanical system. The partial feedback
linearization control together with energy based Lyapunov
function have been applied to a crane system for grab operation.
The developed theory is not complete, however the procedure
shown in the paper may demonstrate a good example for
developing control strategy based on combination of the high
gain and energy based Lyapunov function. Further analyses for
asymptotic stability and convergence are planned.
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