• Title/Summary/Keyword: coupling circuit

Search Result 473, Processing Time 0.031 seconds

A Study on the construction of Broad-Band Twisted-Wire Quadrature Hybrid (광대역 Twisted-Wire Quadrature Hybrid 회로구성에 관한 연구)

  • 박정기;김성진
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.6
    • /
    • pp.78-85
    • /
    • 1980
  • A symmetrical 3-dB quadrature hybrid circuits, consisting mainly of bifilar pair of taitoted wires, is described. A cascade of two such hybrid circuits can achieve an octave bandwidth hybrid circuit with a small coupling loss. Since the proposed type is simple, compact, and low In cost 1 its applicarion may be preferred to the more common coaxial line or printed -circuit type hybrid version in the frequency region below 1 GHz. This study provides a design method for a hybrid circuit mixing two different antenna signals for the anti - ghosting of television signal.

  • PDF

Design of the Novel DVB-H Antenna for the Folder-Type Mobile Handheld Terminal

  • Lee, Jung-Nam;Park, Jong-Kweon;Kim, Jin-Suk
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • We have proposed a novel DVB-H(Digital Video Broadcast for Handheld) antenna for folder-type mobile handheld terminal by using a coupling element, a stub, and an L-type matching circuit. The L-type matching circuit consisting of two chip inductors is used for achieving an improved impedance matching over the DVB-H frequency band ($470{\sim}702\;MHz$). Simulated results showed the stub worked to more knot the lower and upper frequency ends of the input impedance curve. The antenna exhibits a flat gain characteristic from 2 to 2.8 dBi over the DVB-H frequency band. The radiation patterns are a stable Figure-of-eight radiation pattern in the frequency range.

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory

  • Shim, Hyunjin;Nam, Sangwook;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.219-224
    • /
    • 2016
  • In this paper, coupled-mode theory (CMT) is used to obtain a transient solution analytically for a wireless power transfer system (WPTS) when unit energy is applied to one of two resonators. The solutions are compared with those obtained using equivalent circuit-based analysis. The time-domain CMT is accurate only when resonant coils are weakly coupled and have large quality factors, and the reason for this inaccuracy is outlined. Even though the time-domain CMT solution does not describe the WPTS behavior precisely, it is accurate enough to allow for an understanding of the mechanism of energy exchange between two resonators qualitatively. Based on the time-domain CMT solution, the critical coupling coefficient is derived and a criterion is suggested for distinguishing inductive coupling and magnetic resonance coupling of the WPTS.

A Study on Tap-offs with High Density of Coupling Intervals for CATV and/or MATV Systems (CATV 및 MATV 시스템용 고밀도 결합간격의 신호분기기에 관한 연구)

  • 김동일;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.2
    • /
    • pp.53-59
    • /
    • 1987
  • This paper describes the design theory of a weakly-coupled Tap-off with high density of coupling intervals for CATV and/or MATV systems, by which the degree of freedom in design and density of coupling intervals are significantly increased compared with the intrinsic one. It is also described how to construct the two-way divider (Tap-off) in the generalized type. Furthermore, the practical measurements of the frequency characteristics for a fabricated circuit show very good agreements with theoretical results.

  • PDF

Low-temperature polycrystalline silicon level shifter using capacitive coupling for low-power operation

  • Chung, Hoon-Ju;Sin, Yong-Won;Cho, Bong-Rae
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.21-23
    • /
    • 2010
  • A new level shifter using low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs) for low-power applications is proposed. The proposed level shifter uses a capacitive-coupling effect and can reduce the power consumption owing to its no-short-circuit current. Its power saving over the conventional level shifter is 72% for a 3.3 V input and a 10 V output.

Design of Multi-winding Inductor for Minimum Inductor Current Ripple Using Optimized Coupling Factor

  • Kang, Taewon;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.231-232
    • /
    • 2016
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor of n-phase multi-winding coupled inductor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the duty ratio of steady-state operating point approaches 1/n, 2/n, ${\cdots}$ or (n-1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the duty ratio of steady-state operating point approaches either zero or one. Therefore, coupled inductors having optimal coupling factor can minimize the ripple current of inductor and inductor size.

  • PDF

Analysis and Design of Quadruple-Active-Bridge Converter Employing Passive Power Decoupling Capability (수동 전력 비동조화가 가능한 QAB 컨버터의 분석과 설계에 관한 연구)

  • Yun, Chang-Woo;Lee, Jun-Young;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.157-164
    • /
    • 2022
  • This study proposes an enhanced quadruple-Active-Bridge (QAB) converter that can solve power coupling problems. By adopting a multiple winding transformer, the equivalent circuit of a conventional QAB converter has power couplings between arbitrary output ports. This coupling is an unintended power relationship that complicates the regulation of output voltage of the multiple ports. The proposed converter can carry out power decoupling by changing the arrangement of the coupling inductor. Power transfer equations for the proposed converter and its operating principles are analyzed in detail. The power coupling caused by the transformer's leakage inductance is verified by using a proposed coupling factor that presents the relationship between inductance ratio and coupling power. In addition, the decoupling power control performance of the proposed converter is verified by simulation and a 3 kW prototype converter.

A Word Line Ramping Technique to Suppress the Program Disturbance of NAND Flash Memory

  • Lee, Jin-Wook;Lee, Yeong-Taek;Taehee Cho;Lee, Seungjae;Kim, Dong-Hwan;Wook-Ghee, Hahn;Lim, Young-Ho;Suh, Kang-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.125-131
    • /
    • 2001
  • When the program voltage is applied to a word line, a part of the boosted channel charge in inhibited bit lines is lost due to the coupling between the string select line (SSL) and the adjacent word line. This phenomenon causes the program disturbance in the cells connected to the inhibited bit lines. This program disturbance becomes more serious, as the word line pitch is decreased. To reduce the word line coupling, the rising edge of the word-line voltage waveform was changed from a pulse step into a ramp waveform with a controlled slope. The word-line ramping circuit was composed of a timer, a decoder, a 8 b D/A converter, a comparator, and a high voltage switch pump (HVSP). The ramping voltage was generated by using a stepping waveform. The rising time and the stepping number of the word-line voltage for programming were set to $\mutextrm{m}-$ and 8, respectively,. The ramping circuit was used in a 512Mb NAND flash memory fabricated with a $0.15-\mutextrm{m}$ CMOS technology, reducing the SSL coupling voltage from 1.4V into a value below 0.4V.

  • PDF

Silicon Substrate Coupling Modeling, Analysis, and Substrate Parameter Extraction Method for RF Circuit Design (RF 회로 설계를 위한 실리콘 기판 커플링 모델링, 해석 및 기판 파라미터 추출)

  • Jin, Woo-Jin;Eo, Yung-Seon;Shim, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.12
    • /
    • pp.49-57
    • /
    • 2001
  • In this paper, equivalent circuit model and novel model parameter extraction method of a silicon(Si) substrate are presented. Substrate coupling through Si-substrate is quantitatively investigated by analyzing equivalent circuit with operating frequency and characteristic frequencies (i.e., pole and zero frequency) of a system. For the experimental verification of the equivalent circuit and parameter extraction method, test patterns are designed and fabricated in standard CMOS technology with various isolation distances, substrate resistivity, and guard-ring structures. Then, these are measured in l00MHz-20GHz frequency range by using vector network analyzer. It is shown that the equivalent-circuit-based HSPICE simulation results using extracted parameters have excellent agreement with the experimental results. Thus, the proposed equivalent circuit and parameter extraction methodology can be usefully employed in mixed-signal circuit design and verification of a circuit performance.

  • PDF

A Study on LLC Resonant Converter Employing Coupled Inductor to Reduce Output Current Ripple (커플드 인덕터를 활용하여 출력 전류 리플을 저감하는 LLC 공진형 컨버터에 관한 연구)

  • Lee, Yong-Chul;Kang, Min-Hyuck;Kang, Chan-Ho;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.208-216
    • /
    • 2018
  • In this paper, an LLC resonant converter employing two coupled inductors on the secondary side of the converter is proposed. The conventional LLC converter exhibits serious power loss during secondary winding of the transformer because of generation of tremendous output current ripples. To overcome this problem, an LLC resonant converter with a current doubler as a rectifying circuit was recently proposed. However, the current-doubler rectifying circuit requires coupled inductors with a high coupling ratio to retain the designed resonance characteristics. Therefore, an additional hardware filter is required at the output stage to address large output current ripples. Additional design procedures are also necessary because the inductance component of the added filter affects the designed resonant network. To solve this issue, an LLC resonant converter employing two coupled inductors is proposed in this paper. Mathematical analysis shows that the proposed secondary-side current-doubler circuit does not affect the designed resonance characteristics. The operating principles and theoretical analyses are proven through a simulation and experiments with a 54 V/28 A prototype.