• Title/Summary/Keyword: correction parameter

Search Result 301, Processing Time 0.03 seconds

Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory

  • Hadji, Lazreg;Avcar, Mehmet
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.281-293
    • /
    • 2021
  • This paper presents a new nonlocal Hyperbolic Shear Deformation Beam Theory (HSDBT) for the free vibration of porous Functionally Graded (FG) nanobeams. A new displacement field containing integrals is proposed which involves only three variables. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect and its account for shear deformation by a hyperbolic variation of all displacements through the thickness without using the shear correction factor. It has been observed that during the manufacture of Functionally Graded Materials (FGMs), micro-voids and porosities can occur inside the material. Thus, in this work, the investigation of the free vibration analysis of FG beams taking into account the influence of these imperfections is established. Four different porosity types are considered for FG nanobeam. Material characteristics of the FG beam are supposed to vary continuously within thickness direction according to a power-law scheme which is modified to approximate material characteristics for considering the influence of porosities. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion of the nanobeam are derived using Hamilton's principle. The effects of nonlocal parameter, aspect ratio, and the porosity types on the dynamic responses of the nanobeam are discussed.

A numerical framework of the phenomenological plasticity and fracture model for structural steels under monotonic loading

  • He, Qun;Yam, Michael C.H.;Xie, Zhiyang;Lin, Xue-Mei;Chung, Kwok-Fai
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.587-602
    • /
    • 2022
  • In this study, the classical J2 flow theory is explicitly proved to be inappropriate to describe the plastic behaviour of structural steels under different stress states according to the reported test results. A numerical framework of the characterization of the strain hardening and ductile fracture initiation involving the effect of stress states, i.e., stress triaxiality and Lode angle parameter, is proposed based on the mechanical response of structural steels under monotonic loading. Both effects on strain hardening are determined by correction functions, which are implemented as different modules in the numerical framework. Thus, other users can easily modify them according to their test results. Besides, the ductile fracture initiation is determined by a fracture locus in the space of stress triaxiality, Lode angle parameter, and fracture strain. The numerical implementation of the proposed model and the corresponding code are provided in this paper, which are also available on GitHub. The validity of the numerical procedure is examined through single element tests and the accuracy of the proposed model is verified by existing test results.

Theoretical Calculation of Activity Coefficients of Liquid Mixtures (액체혼합물의 활동도계수의 이론적 계산)

  • Moon Dae-Won;Jhon Mu Shik;Lee Taikyue
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.395-403
    • /
    • 1977
  • Significant structure theory was applied to some liquid mixture systems ranging from simple monatomic molecule systems to polyatomic molecule systems, and the activity coefficients ${\gamma}$ of the liquid mixture systems were calculated over whole mole fractions using the following thermodynamic relation $RTln_{{\gamma}i} = (\frac{{\partial A}^E}{{\partial N}_i})_{T,V,N_i} $ where $A^E$ represents the excess Helmholtz free energy, and $N_i$ is the number of molecules of component i. The activity coefficients of the solutions such as monatomic molecule systems (Ar-Kr, Kr-Xe) and diatomic molecule systems $(Ar-O_2,\;N_2-CO)$ and $CH_4-Kr$ systems whose components have similar shapes for intermolecular potential curves were calculated successfully only with the ${\delta}E_s$, correction parameter for energy $E_s$, for mixture systems. For other systems such as $Ar-N_2,\;O_2-N_2\;and\;CH_4-C_3H_8$ whose components have dissimilar intermolecular potential curve shapes an additional correction parameters ${\delta}$V and even one more parameter ${\delta}$n were necessary [see Eqs.(10)∼(12)].

  • PDF

Hardness Correction Algorithm Applicable to Korea as Related to Aquatic Toxicity Variation for Heavy Metals (국내 적용가능한 중금속 수서독성에 대한 경도보정 알고리즘 연구)

  • An, Youn-Joo;Yang, Chang-Yong;Nam, Sun-Hwa
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.275-282
    • /
    • 2008
  • Water hardness is a significant parameter as related to aquatic toxicity of some heavy metals. Hardness dependent metals include cadmium, copper, chromium (III), nickel, lead, zinc and silver. Developed countries have applied the hardness correction procedure to derive the water quality criteria for protecting the aquatic organisms. In the present study, we investigated the hardness correction algorithms used in United States of America, European Union, Australia/New Zealand, and Canada, and analyzed the details associated with those algorithms. Toxicity values of heavy metals were definitely different after hardness correction for all of algorithms analyzed. We found that the hardness corrected toxicity values followed by the algorithms of USA and Australia/New Zealand were very similar or same, however they were slightly different for cadmium at the hardness less than 30 mg $CaCO_3\;L^{-1}$. Among the hardness correction algorithms studied, the algorithm used in Australia/New Zealand appears to be a good choice to apply in Korean situation due to its simplicity compared to the algorithm of USA.

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF

An Extended TRL Calibration Method (확장된 TRL 오차 수정 방법)

  • Kim Yusin;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1099-1105
    • /
    • 2005
  • TRL error correction method is widely used for measuring high frequency device mounted on PCB. In order to correct error more precisely, the characteristic impedance of standard transmission line should be known mounted for error correction. The capacitance per the unit length of transmission line is calculated by using standard transmission line which terminate resistor additionally at previous method and the characteristic impedance of standard transmission line is calculated with fitting method according to frequency, but the characteristic impedance extracted by a manufacturing inaccuracy is influenced. In this study, a novel method can reduce the manufacturing inaccuracy using measured s-parameters and can extract more accurate characteristic impedance than the previous method.

FIB Machining Characteristic Analysis according to $Ga^+$ Ion Beam Current (집속이온빔의 전류변화에 따른 미세가공 특성분석)

  • Kang, Eun-Goo;Choi, Byeong-Yeol;Hong, Won-Pyo;Lee, Seok-Woo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2006
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\Phi}10nm$ and smaller is available. Since general FIB uses very short wavelength and extremely high energy, it can directly make a micro structure less than $1{\mu}m$. As a result, FIB has been probability in manufacturing high performance micro devices and high precision micro structures. Until now, FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis, IC error correction, etc. In this paper FIB-Sputtering and FIB-CVD characteristic analysis were carried out according to $Ga^+$ ion beam current that is very important parameter for minimizing the pattern size and maximizing the yield. Also, for FIB-Sputtering burr caused by redeposition of the substrate characteristic analysis was carried out.

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

Adaptive Quantization Scheme for Multi-Level Cell NAND Flash Memory (멀티 레벨 셀 낸드 플래시 메모리용 적응적 양자화기 설계)

  • Lee, Dong-Hwan;Sung, Wonyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.540-549
    • /
    • 2013
  • An adaptive non-uniform quantization scheme is proposed for soft-decision error correction in NAND flash memory. Even though the conventional maximizing mutual information (MMI) quantizer shows the optimal post-FEC (forward error correction) bit error rate (BER) performance, this quantization scheme demands heavy computational overheads due to the exhaustive search to find the optimal parameter values. The proposed quantization scheme has a simple structure that is constructed by only six parameters, and the optimal values of them are found by maximizing the mutual information between the input and the output symbols. It is demonstrated that the proposed quantization scheme improves the BER performance of soft-decision decoding with only small computational overheads.

Suitability Review for Power Correction Parameter of Induction Motor (유도전동기 역률 보상 파라미터의 적정성 검토)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.101-109
    • /
    • 2008
  • Induction motor needs reactive power to sustain the electromagnetic field required for rotating. If reactive power is provided by the load side instead of the source side, power factor will be increased. Power factor of induction motor is usually low and needs to be compensated with power capacitor. In domestic regulations, Capacitor capacity for the power factor correction of induction motor should be complied with the recommended value by the motor output. But, at the same output, characteristics of induction motor is different from each other by the rotation speed and is not suitable for application of regular capacitor value regardless of motor's characteristics. In this paper, we compared to each other with the existing value and new proposed value with rotation speed under the same output condition, confirmed that power capacitor capacity is needed to upgrade for the better power factor.