Theoretical Calculation of Activity Coefficients of Liquid Mixtures

액체혼합물의 활동도계수의 이론적 계산

  • 문대원 (한국과학원 화학 및 화학공학과) ;
  • 전무식 (한국과학원 화학 및 화학공학과) ;
  • 이태규 (한국과학원 화학 및 화학공학과)
  • Published : 1977.12.30

Abstract

Significant structure theory was applied to some liquid mixture systems ranging from simple monatomic molecule systems to polyatomic molecule systems, and the activity coefficients ${\gamma}$ of the liquid mixture systems were calculated over whole mole fractions using the following thermodynamic relation $RTln_{{\gamma}i} = (\frac{{\partial A}^E}{{\partial N}_i})_{T,V,N_i} $ where $A^E$ represents the excess Helmholtz free energy, and $N_i$ is the number of molecules of component i. The activity coefficients of the solutions such as monatomic molecule systems (Ar-Kr, Kr-Xe) and diatomic molecule systems $(Ar-O_2,\;N_2-CO)$ and $CH_4-Kr$ systems whose components have similar shapes for intermolecular potential curves were calculated successfully only with the ${\delta}E_s$, correction parameter for energy $E_s$, for mixture systems. For other systems such as $Ar-N_2,\;O_2-N_2\;and\;CH_4-C_3H_8$ whose components have dissimilar intermolecular potential curve shapes an additional correction parameters ${\delta}$V and even one more parameter ${\delta}$n were necessary [see Eqs.(10)∼(12)].

액체이론(Significant Structure Theory)를 단원자 분자로부터 다원자 분자에 이르는 여러 액체혼합물에 적용하여 전 농도 범위에서 액체 혼합물의 활동도 계수를 계산했다. 단원자 분자계(Ar-Kr, Kr-Xe)와 이원자 분자계$(Ar-O_2,\;N_2-CO)$와 메탄-크립톤계의 액체혼합물의 활동도 계수는 ${\delta}E_s$ 수정 변수에 의해 좋은 결과를 얻었다. 아르곤-질소, 산소-질소, 그리고 메탄-프로판계에 대해서는 이 외에 ${\delta}$V, ${\delta}$n 수정 변수가 더 필요했다.

Keywords

References

  1. Proc. Natl. Acad. Sci.(U.S) v.44 H. Eyring;T. Ree;N. Hirai
  2. Signifrcant Liquid Structures H. Eyring;M.S. Jhon
  3. Proc. Natl. Acad. Sci.(U. S.) v.45 E.J. Fuller;T. Ree;H. Eyring
  4. Proc. Natl. Acad. Sci.(U. S.) v.57 K.C. Kim;W.C. Lu;T. Ree;H. Eyring
  5. Proc. Natl. Acad. Sci.(U. S.) v.55 D.R. Mclaughlin;H. Eyring
  6. Zahlemwerte und functionen aus Physik. Chemie, Astronomie, Geophysik and Technik v.II Landolt-Bornstein
  7. Proc. Natl. Acad. Sci.(U. S.) v.52 K. Liang;H.Eyring;R. Marchi
  8. J. Chem. Phys. v.42 S. Ma;H. Eyring
  9. Proc. Nati. Acad. Sci.(U. S.) v.53 B.A. Miner;H. Eyring
  10. Thermodynamics E.A. Guggenheim
  11. Trans. Faraday. Soc. v.63 R.H. Davies;A.G. Duncan;G. Saville;L.A.K. Staveley
  12. J. Chem. Soc. Faraday Trans. v.70 J.C.G. Calado;G.A. Gorcia;L.A.K. Staveley
  13. Trans. Farady Soc. v.58 R.A.H. Pool;G. Saville;T.M. Herrington;B.D.C. Shields;L.A.K. Staveley
  14. Trans. Farady Soc. v.67 J.C.G. Calado;L.A.K. Staveley
  15. Helv. Chim. Acta v.53 H. F. Stoeckli;L.A.K. Stavleey
  16. J. Korean Chem. Soc. v.8 S. Chang;H. Pak;W.K. Paik;M.S. Jhon;W.S. Ahn
  17. J. Phys. Colil. Chem. v.55 A.W. Tickner;F.P. Lossing
  18. Adv. Cryog. Eng. v.18 T.R. Das;P.T. Eubank
  19. Trans. Faraday. Soc. v.64 M.Y. Shan'a;F.B. Canfield