• Title/Summary/Keyword: convex function

Search Result 454, Processing Time 0.025 seconds

k-FRACTIONAL INTEGRAL INEQUALITIES FOR (h - m)-CONVEX FUNCTIONS VIA CAPUTO k-FRACTIONAL DERIVATIVES

  • Mishra, Lakshmi Narayan;Ain, Qurat Ul;Farid, Ghulam;Rehman, Atiq Ur
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.357-374
    • /
    • 2019
  • In this paper, first we obtain some inequalities of Hadamard type for (h - m)-convex functions via Caputo k-fractional derivatives. Secondly, two integral identities including the (n + 1) and (n+ 2) order derivatives of a given function via Caputo k-fractional derivatives have been established. Using these identities estimations of Hadamard type integral inequalities for the Caputo k-fractional derivatives have been proved.

MILNE TYPE INEQUALITIES FOR DIFFERENTIABLE s-CONVEX FUNCTIONS

  • Djenaoui, Meriem;Meftah, Badreddine
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.325-338
    • /
    • 2022
  • In this paper, a new identity is given. On the basis of this identity, we establish some new estimates of Milne's quadrature rule, for functions whose first derivative is s-convex. We discuss the cases where the derivatives are bounded as well as Lipschitzian. Some illustrative applications are given.

FRACTIONAL TRAPEZOID AND NEWTON TYPE INEQUALITIES FOR DIFFERENTIABLE S-CONVEX FUNCTIONS

  • Fatih Hezenci;Huseyin Budak;Muhammad Aamir Ali
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.160-183
    • /
    • 2023
  • In the present paper, we prove that our main inequality reduces to some trapezoid and Newton type inequalities for differentiable s-convex functions. These inequalities are established by using the well-known Riemann-Liouville fractional integrals. With the help of special cases of our main results, we also present some new and previously obtained trapezoid and Newton type inequalities.

GENERALIZED H$\ddot{O}$LDER ESTIMATES FOR THE $\bar{\partial}$-EQUATION ON CONVEX DOMAINS IN $\mathbb{C}^2$

  • Cho, Hong-Rae;Seo, Yeon-Seok
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.221-227
    • /
    • 2009
  • In this paper, we introduce the generalized H$\ddot{o}$lder space with a majorant function and prove the H$\ddot{o}$lder regularity for solutions of the Cauchy-Riemann equation in the generalized Holder spaces on a bounded convex domain in $\mathbb{C}^2$.

ON RESULTS OF MIDPOINT-TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL OPERATORS WITH TWICE-DIFFERENTIABLE FUNCTIONS

  • Fatih Hezenci;Huseyin Budak
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.340-358
    • /
    • 2023
  • This article establishes an equality for the case of twice-differentiable convex functions with respect to the conformable fractional integrals. With the help of this identity, we prove sundry midpoint-type inequalities by twice-differentiable convex functions according to conformable fractional integrals. Several important inequalities are obtained by taking advantage of the convexity, the Hölder inequality, and the power mean inequality. Using the specific selection of our results, we obtain several new and well-known results in the literature.

CERTAIN SIMPSON-TYPE INEQUALITIES FOR TWICE-DIFFERENTIABLE FUNCTIONS BY CONFORMABLE FRACTIONAL INTEGRALS

  • Fatih Hezenci;Huseyin Budak
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.217-228
    • /
    • 2023
  • In this paper, an equality is established by twice-differentiable convex functions with respect to the conformable fractional integrals. Moreover, several Simpson-type inequalities are presented for the case of twice-differentiable convex functions via conformable fractional integrals by using the established equality. Furthermore, our results are provided by using special cases of obtained theorems.

CERTAIN SUBCLASS OF STRONGLY MEROMORPHIC CLOSE-TO-CONVEX FUNCTIONS

  • Gagandeep Singh;Gurcharanjit Singh; Navyodh Singh
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 2024
  • The purpose of this paper is to introduce a new subclass of strongly meromorphic close-to-convex functions by subordinating to generalized Janowski function. We investigate several properties for this class such as coefficient estimates, inclusion relationship, distortion property, argument property and radius of meromorphic convexity. Various earlier known results follow as particular cases.

A GENERALIZATION OF STRONGLY CLOSE0TO-CONVEX FUNCTIONS

  • Park, Young-Ok;Lee, Suk-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.449-461
    • /
    • 2001
  • The purpose of this paper is to study several geometric properties for the new class $G_{\kappa}(\beta)$ including geometric interpretation, coefficient estimates, radius of convexity, distortion property and covering theorem.

  • PDF

SEVERAL PROPERTIES OF THE SUBCLASS OF Gk DESCRIBED BY SUBORDINATION

  • PARK, YOUNG OK
    • Honam Mathematical Journal
    • /
    • v.21 no.1
    • /
    • pp.139-147
    • /
    • 1999
  • In this paper we generalize the definition of strongly close-to-convex functions by using the functions g(z) of bounded boundary rotation and investigate the distortion and rotation theorem, coefficient inequalities, invariance property and inclusion relation for the new class $G_{k}[A,\;B]$.

  • PDF