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FRACTIONAL TRAPEZOID AND NEWTON TYPE
INEQUALITIES FOR DIFFERENTIABLE S-CONVEX
FUNCTIONS

FatiH HEzeNcr*, HUSEYIN BUDAK, AND MUHAMMAD AAMIR ALI

Abstract. In the present paper, we prove that our main inequality re-
duces to some trapezoid and Newton type inequalities for differentiable
s-convex functions. These inequalities are established by using the well-
known Riemann-Liouville fractional integrals. With the help of special
cases of our main results, we also present some new and previously ob-
tained trapezoid and Newton type inequalities.

1. Introduction

The inequality theory is a popular topic in many mathematical areas and
remains an interesting research area with a great deal applications. One of the
most famous inequalities for the case of convex functions is Hermite-Hadamard-
type inequality because of its rich geometrical importance and applications.
Therefore, Hermite-Hadamard-type inequalities and related these inequalities
such as trapezoid, midpoint, and Simpson’s inequality have been investigated
by considerable number of mathematicians. In addition, the convex functions
still employ a central role in the theory of inequalities since the convex func-
tions develop a series of inequalities. Another significant result concerned with
convex function is the Hermite-Hadamard inequality. Numerous mathemati-
cians have studied to the Hermite-Hadamard inequality with great interest to
generalise, refine, and extend it to the case of different classes of functions such
as quasi-convex functions, log-convex, s-convex functions, etc.

Fractional calculus has been the focus of attraction for researchers in math-
ematical sciences owing to its fundamental definitions, properties, and appli-
cations in tackling real-life problems. Because of the importance of fractional
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calculus, mathematicians have investigated different fractional integral inequal-
ities. It can be obtained the bounds of new formulas by using the Hermite-
Hadamard and Simpson’s type inequalities.

1§can and Wu established Hermite-Hadamard type inequalities with the
aid of harmonic convexity in [20]. By using the k-fractional integrals, the au-
thors established some Ostrowski’s type inequalities to the case of differentiable
mappings in the paper [12]. In the paper [21], Khan et al. investigated some
new estimates of Hermite-Hadamard type inequalities for Riemann-Liouville
fractional integrals and conformable fractional integrals. With the aid of frac-
tional integrals, Tunc [32] presented some new variants of Hermite-Hadamard
inequalities for h-convex functions.

Sarikaya and Ertugral [30] established a new class of fractional integrals,
which is known generalized fractional, and they used these integrals to prove
the general version of Hermite-Hadamard type inequalities for convex func-
tions. Zhao et al. proved Hermite-Hadamard type inequalities for interval-
valued functions by using generalized fractional integrals in the paper [35]. It
is referred the reader to [1, 2, 3, 34, 4, 21, 32] for a better understanding of
fractional integral inequalities.

Simpson’s inequalities are inequalities that are created from Simpson’s rules.
Simpson’s first rule namely the rule of Simpson’s quadrature formula are estab-
lished by many mathematicians. For instance, some of Simpson’s type inequal-
ities with the aid of the Riemann-Liouville fractional integrals are established
in the paper [28]. Moreover, it is investigated to several fractional Simpson
type inequalities for functions whose second derivatives in absolute value are
convex in the paper [15]. It can be referred to [7, 8, 33, 26] and the references
therein for further significant information about Simpson type inequalities and
some properties of Riemann—Liouville fractional integrals and various fractional
integral operators.

Simpson’s second rule comprises the rule of three-point Newton-Cotes quad-
rature, so evaluations based on three steps quadratic kernel are called Newton-
type results. The inequalities obtained with this Newton-type result are known
as Newton-type inequalities in the literature. A lot of research has been done on
this inequality, which attracts the attention of mathematicians. For instance,
some Newton’s type inequalities for differentiable convex functions are proved
by the aid of the Riemann-Liouville fractional integrals in the paper [31]. In
addition, the authors also present some inequalities of Riemann-Liouville frac-
tional Newton’s type for functions of bounded variation. Some new inequalities
of Newton’s type based on convexity are given and some applications for spe-
cial cases of real functions are also presented in the paper [13]. Moreover, some
new integral inequalities of Newton’s type for functions whose first derivative in
absolute value at certain power are arithmetically-harmonically convex are ob-
tained in the paper [11]. We refer the reader to [18, 19, 24, 25] for more pieces
of significant information and unexplained subjects about Newton’s type of
inequalities including convex differentiable functions.



162 Fatih Hezenci, Hiiseyin Budak, and Muhammad Aamir Ali

With the aid of the ongoing studies and mentioned papers above, we will
establish trapezoid type and Newton’s formula type inequalities for the case of
differentiable s-convex functions by Riemann-Liouville fractional integrals. In
Sect. 2, the fundamental definitions of fractional calculus and other relevant
research in this discipline will be presented. In Sect. 3, we will prove an
integral equality which is critical in establishing the primary results of the
given paper. Moreover, it will be proved some new trapezoid and Newton type
inequalities for differentiable s-convex functions with the aid of the Riemann-
Liouville fractional integrals. In addition, we also give some new and previously
obtained trapezoid and Newton type inequalities with the help of special cases
of our main results. In Sect. 4, we will give some ideas for future work on this
subject.

2. Preliminaries

In this section, we will present the basic definitions and facts about the
fractional integral notations and different fractional integrals are also presented
to recall various inequalities.

Definition 2.1. A function .% : [0,00) — [0, 00) will be called s—convex in
the second sense if the following inequality

F(te+(1—t)y) <t°F (x)+ (1 —t)°F (y)
is valid for all z,y € [0,00) with t € [0, 1] and for some fixed s € (0,1].

The s-convex function was introduced in the paper [6] and some properties
and connections with s-convexity in the first sense were established in paper
[17]. Moreover, it can be easily seen that for s = 1, s-convexity reduces to the
ordinary convexity of functions defined on [0, c0).

In the paper [10], Dragomir and Fitzpatrick established a variant of Hermite-
Hadamard inequality which is valid for the case of the s-convex functions.

Theorem 2.2. [10] Let .Z : [0,00) — [0,00) be a s-convex function in the
second sense, where s € [0,1) and let 0,0 € [0,00),0 < d. If # € L1]0,1], then
the following inequalities hold:

é Z (o 7

For recent results and generalizations concerning s-convex functions see [5,
23, 10].

Remark 2.3. [27] If we assign s = 1 in inequalities (1), then it can be
obtained the classical Hermite-Hadamard inequality:
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From the fact of fractional calculus theory, mathematical preliminaries will
be given as follows:

Definition 2.4. [22] The well-known gamma function and incomplete beta
function are defined

I'(x):= /tx_le_tdt
0

and

B(z,y,r) = /tm_l (1—t)Y""at,
0
respectively for 0 < xz,y < co and z,y € R.
Definition 2.5. [14, 22] Let us note that .% belongs to Li[o,d]. The

Riemann-Liouville integrals J¢', .% and J§' .% of order a > 0 with o > 0 equal
to

e F(2) = ﬁ /: (@ =0  F)dt, ©>0
and
10 a1
Je F(z) = @/Qg (t—2) L FW)dt, =<0,
respectively.

Remark 2.6. If it is chosen o = 1 in Definition 2.5, then the fractional
integral reduces to the classical integral.

3. Main results of parameterized inequalities

Lemma 3.1. Let .Z : [0,d] — R be an absolutely continuous function on
(0,0) so that F' € Lyo0,6], « > 0, and A > 0. Then, the following equality
holds:

) AF (o) + > *2” [y‘ (‘”325> ny (2";5” LA (5)

Sy VT ) I F (o)
0—o0o

:—7ﬁh+h+hk
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Here,
L= J o =N [ Z 5+ (1= t) o) — F' (to + (1 — 1) 6)] dt,
0
I, :f(ta —D[F 6+ (1 —t)o)— F' (to+ (1 —1t)6)dt,
I3 :fl(to‘— 1=MN)[F {td+(1—t)o) — F (tc+ (1 —t) )] dt.

Proof. Using the facts of the fundamental rules of integration by parts, we

derive
3)

Il—/(t“—A)[ﬂ’(td—l—(l—t)a)—ﬁ’(to+(1—t)6)]dt
0

W=

1
3

53}/#} L (t6+ (1 —t) o) dt

0
0

- 5i0(t“—/\)9(t6+(1—t)0)

Wl

%
B /ta_lﬂ(ta—&—(l —t)8)dt
o 5—00

et () ) (5) o (25 ]

/ta LF(t6+ (1 —1t) )dt—%/t“ L7 (to + (1 —t)6)dt.
g
0 0

b N F o+ (1 1))

ol

e

Similarly, we obtain

) ) ()

(3
o §azfl - a—1
LT (15 + (L - ) o) dt — t*LF (to + (1 —t) 6) dt
— 0
%

1
3
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and

(5)

Iy= [/\9(0)— ((;)a—u—x))
y [fi (‘”325) + 7 (2";5)} +)\§(5)}

1 1

(67

5_U/ta—13?(t6+(1—t)

Z (to + (1 —t) ) dt.

o

If we add equalities (3)—(5), then we get

(6)

I +1, + I
. 1 [2)\9(0)+(1—2)\) {y (20;6) +g:<04;26)] +2>\54‘(5)}

— 0

1 1

-2 [/t‘l‘lﬁ(té—i—(l—t)a)dt—s—/to‘ '\ (to+(1—t)6)dt].

-0
0 0

By using the equality (6) and with the help of the change of the variable

x=t+(1—t)o and x = toc + (1 —t)4 for ¢t € [0,1] respectively, it can be

rewritten as follows

(7)
L+ 1L+ 13
5i T (o) + (1— 2\ {y (20;5> + 7 (";25)] LT (5)}
R S 0+ o 0]
Multiplying the both sides of (7) by 252, the equality (2) is obtained. This is
the end of proof of Lemma 3.1. O

Remark 3.2. If we choose A\ = % in Lemma 3.1, then Lemma 3.1 equals to

F)+70) ;Esﬁaii o5 ) 4 I8 7 ()]

:5;(]/(#—3 (7 (85 + (1= 1)0) = F' (to + (1~ ) §)] dt
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:5;(7/((1—75)0“—t“)ﬁ’(ta+(1—t)6)dt,

0

which is established by [29, Lemma 2].

Remark 3.3. Let us consider « = 1 in Remark 3.2. Then, Remark 3.2
reduces to [9, Lemma 2.1].

Remark 3.4. If we take A = % in Lemma 3.1, then Lemma 3.1 is equal to

é {54‘(0)+3 [ﬂ (0225> +F (2055” +5“(5)}

T )+ 5 ()]

e
:T[Il+12+13},

which is given by [16, Lemma 1]. Here,

Ilzfg(ta—é) [(F (5 + (1 —t)o) — F' (to + (1 —1)6)] dt,
0

Ingg(t’lf%) [(Z'(t0+ (1 —t)o) — F' (to + (1 —t) )] dt,

Ingl(tafg) (F' (6 + (1 —t)o) — F' (to+ (1 —t) )] dt.

Remark 3.5. Let us consider « = 1 in Remark 3.4. Then, Remark 3.4
reduces to Erden et al. [11, Lemma 1].

Corollary 3.6. For A =0, Lemma 3.1 equals to

1 o+26 2046 I'(a+1)

i F — JSF(0) + J§ F
(0—0)

= [ + I+ I5],

where

t[F 0+ (1 —t)o)— F' (to + (1 —1t)0)]dt,

~
fu
Il

(=D [F 5+ (1—t)o) —F' (to + (1 —t)d)]dt,

t*-1D[F @+ 1-t)o)—F (to+ (1 —1t)0)]dt.

&
[

el
Il
N ey s I oy © i
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Theorem 3.7. Assume that the assumptions of Lemma 3.1 hold. Assume
also that the function |%#'| is s-convex on [, ). Then, the following inequality
holds:

AT (o) + 122 {ﬁ(”+25>+9<2"+5ﬂ LAZ (5)

2 3 3
I'(«

D .7 )+ 557 @)

d—o0

< > (AT (s, A) + AS (5, A) + AT (s) + AL (s) + AF (s, A\) + AF (s, )

< |7 (o) + |7 (9)]].

Here,

%
A (5,)) = /ts [ — Al dt
0

s+a+1
1 20\ o 1\s+ta+l A (1)s+1 1 1
st+a+1 |: s+1 + (g) s+1 (3) ? O S )\a < 3
A (1\sTL 1 1\sta+l 1.1
s+1 (3) s+a+1 (3) ’ )\a Z 3

AS (5,0) = /(1 — 1) [t* =\ dt
0

s+1 7a+1
2 (1@ o2 (-0 |
+B(a+1,5+1,1) 0<% <3,
= —2ﬁ<a+17s+1,Aé),
A 2\s+1 1 1 1
2r(1-@))-Bla+1s+1d),  AF =}

1
o — | dt
g

Ag(s):/ts
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((%)s+a+1 .

)s+a+1>
s

s+a+1 (%
s+1 1
—zm (B =)™,
s+1 s+a+1
(2(sl+1) (%) ° - s+;c+1 (%) * )
s+1 s+1
i (B + ()™
T (@ ()T,

%
Aj‘(s):/(l—t)s ta—;’dt
%
Bla+1,s+1,2) =B (a+1,s+1,3)
s+1 s+1
o () -3,
s+1 s+1
i (B +(3))
1y s+1
) (=)
+B8(a+1,s+1,3)—B(a+1,s+1,32)
725(a+1,s+1,(%)5)
s+1 s+1
w2 (D7 -3
—Bla+1ls+1,2)+8(a+1,s+1,1),
A2 (s,A) = [ £t — (1= N)|dt

1
2
3

5
1=

0<a<

—
B
|

5

d
W=l
IA
Q
AN
3
)

Q
\
|

\
=
ol

N |

el
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1
A2 (s,\) j/ (1= 1) [t — (1 — \)| dt

Bla+1,5+1,1)
—B(a+1s+1,5) 0<1-A<(2)°,

1
RGO

s 1 s+1
2 @ -2 (- a-0h) ]
+B(a+1,s+1,3) (H*<1-a<L
+68(a+1,s+1,1)
—28 <a+1,s+1,(1ﬂ\)i),

Proof. With the aid of modulus, Lemma 3.1 becomes

() ’ F(o)+ 2>\ {y(0+26>+§<20;5>}+/\9<5)

3
l [J8,F (8) + J&F (o)] ]

+1
—0)

<237 /l-aw9%w+a_ﬂa%n¢&a+ﬂ—”®wt
0

—;‘ﬁ’(t5+(1—t)a)—ﬁ’(ta+(1—t)5)|dt

+/|t°‘—(1—/\)||33’(t5+(1—t)a)—ﬁz’(ta+(1—t)6)|dt

From the fact that |.%#'| is s-convex, it follows

’ F (o) + 22)\ [ﬁ(0226>+9<20;5>]+/\9(5)
% 2.7 0) + 757 ()

= A F O+ A =1)° |7 (o)

O\wu v

5| ()| + (1= 1)° |7 (8)]) dt
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o

1
3

+t° | F (o) + (1 —t)°|.F" (0)]] dt

Wl

e =gl @1 - 015 @)

+/It“ = (=N F ©0) + (1 =) [F (0)]

T ()] + (L= ) |7 (5)]] di]

— (S_TJ (AY (5,0) + AY (5, M) + A (s) + AT (s) + AL (s, \) + AZ (5, )))
x [|F (o) +|F' ()]

This finishes the proof of Theorem 3.7. O

Corollary 3.8. Let us consider \ = % and s = 1 in Theorem 3.7. Then,

the following trapezoid type inequality holds:

A2 ( >+A°‘( ;)+A§(1)

+Ag (1)+A(’( >+A6 ( 1)) 1.7 (o)) + 17" (5)]]
- g/l
2 0

Remark 3.9. If we select a = 1 in Corollary 3.8, then Corollary 3.8 be-
comes

o 'dt 17" ()] + 17 (5)]

F (o) + 7 ()
2 6—o

T1F (@) + 17 ()],

which is given by [9, Theorem 2.2].

Remark 3.10. Let us note A = é and s = 1 in Theorem 3.7. Then,
Theorem 3.7 reduces to the following Newton type inequality

’; [ﬁ(o) 13 {fi (”;25) + 7 (20; 5)} +ﬁ‘(5)]
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R 55 0+ 57 ()

) ) o
w4 g (1) 443 (1.5)) 197 @1+ 17 01,

which is proved by [16, Theorem 3].

Remark 3.11. For a =1 in Remark 3.10, the following inequality holds:

[rerfr (552 e () ] - 5 f

256 —0)® . _, ,
ng (@) +[F" (),

which is given by [31, Remark 3].

Corollary 3.12. Let us consider A = 0 in Theorem 3.7. Then, Theorem
3.7 reduces to
1[_(oc+20 2046 I'a+1) P
— _ « 6 @ gr
() (5] oo
5—
< To (AT (5,0) + A3 (5,0) + A3 (s) + A () + A5 (5,0) + A§ (5,0))
< [|Z" (o) +|F" (o)]] -

Corollary 3.13. If we assign « = s = 1 in Corollary 3.12, then Corol-

lary 3.12 reduces to
s
1 o+26 20+6 1
— | F F - F(t)dt
7 (55) e (557)) -5
5(—o0
<20 (15 (o) 417 B)].
Theorem 3.14. Suppose that the assumptions of Lemma 3.1 are valid.
Suppose also that the function |#'|?, ¢ > 1 is s-convex on [0,6]. Then, the
following inequality holds:

AT (o) + 122 {gz (”325> + 7 (2“;5)] FAF (9)

2

_m 57 )+ 727 )]
6 —

S 5 T 11 (@ Ap) + 3 (s A, p))
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) [(il ((é)+ |7 (6)|" + <1_ (;)*) > (U)I(’)>;
. <5i1 ((;)Sﬂ 1! ()] + (1 - (;)“) - (5)q>>i]
e <i1 <(§>+ B <§)+> (.7 @) + 17" (a)@ﬂ .

1 1 _
Here, st = 1 and
P1 (Oé, Aap) = ( |ta - >\|P dt) )

il
% P
P2 (aap) = <f |ta - %|p dt) )
1
3

P3 (O‘aAap) - <}|ta — (1 — /\)|pdt>

D=

O

=

3

Proof. By applying Holder inequality in inequality (8), it follows

AT (o) + ;2A |:y(0'42;)25) (20+6>}

S T 0 7 )]

1
3

%
/|ta APt /|y’ (t6+ (1 — 1) o)|" dt
0 0

=
Q=

1
3

3
+ /|t°‘—)\|pdt /\J@' (to + (1 — 1) )" dt
0 0

Q=

1
P 2

t“—% dt /|52’(t5+(1—t)a)\th

_|_
W‘H\w\m
S|

1
3

2 1

3
1p
+ /t“—5 dt /|ﬁ’(to+(1—t)5)\th
1
3

1
3

=
_Q
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Q=

1
P 1

+ /|t°‘—(1—/\)|pdt /|ﬂ’(t5+(1—t)o)|th

5
1
+ /|ta —(1=XN)|Pdt
3

=
Q=

Wl
[

|F' (to + (1 —t)8)|? dt

From the fact that |#'|? is s-convex, we get

‘m (o) + - _2” {f (“;25) s (2"; 5)} FAZ (5)

T(a+1)

T LR OR S ()]‘

/|t“ AP dt /t5| 7' +(1—=t)° |7 (o)|" dt
0

s
Q=

) T
+ /t5|9’(a)|q+(1—t)s |F'(8)|" dt + /t“—% dt
0 1
|| [e1Eorsa-o17 o
% q
+ /ts |Z" ()| + (1 —1)° |F (6)|" dt
L b L 7
/|ta (= NPt /ts \Z (5)]7 + (1 t)° |2 ()] dt

2
3
1
1 q

+ /tﬂﬁ'(a)f (1— ) |7 (5" dt

o
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1
P

1 1
3 P 1
=2 /|t“—)\|pdt + /|ta—(1—)\)\pdt
0

) [(il ((;>+ 7 O + (l _ @*) . @q))lé
" <si1 (@ )+ (l . @) . W) ) ]

< (17" (@) + 17 (9)")] 7]
This completes the proof of Theorem 3.14. O

Corollary 3.15. Let us consider A\ = % and s = 1 in Theorem 3.14. Then,

the following trapezoid type inequality holds:

7 (o) ; 7 ) _ QF(E;J“*U?Y [J5 7 (6) + J5-F (0)] ‘

-0 LN (]
= 92 ¥1 0472,]9 ®3 aa2ap

x [(5@ (cf)\"l; 7' (5)lq)3 n (ﬁ (o) ;35@ (5)q);]

F (@) + | Wﬂ |

+2¢32 (a, p) ( 5

Corollary 3.16. Consider o = 1 in Corollary 3.15. Then, we obtain

1) 1
F)+F06) 1 /f §—o [/ 31 \¥
- <
2 §—o Fdt) < 9 2r+l(p41)

x [(5@ (a>\"6+ |7 (5)lq)3 + (ﬁ (o)* +65|y/ (5)q);]

! <2p(p1Jr 1)>:’ <5Z’ (@) —&2— EZ ((S)|q>;‘| |
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Remark 3.17. If we choose \ = % and s = 1 in Theorem 3.14, then the
following Newton type inequality

ﬁ [9(o)+3 {9 (";25) +9<2";5): +ﬂ(6)]

D 12 )+ 57 0]

<032 {(so (cgp) + 00 (e 50) ) _(59‘” @) + 17 <6>|q)3

+<y/(a)|qig5'y'(5)q); +2¢2<a,p><ﬂ’(a)|qgﬁ/(anq);},

which is given by [16, Theorem 4].

Remark 3.18. If we assign « = 1 in Remark 3.17, then the following
Newton’s type inequality holds:

)
2432 (2250 43z (252 4 2 (5] - 2 /f(t)dt
g 3 3 o
_(@—o) [( et s
-9 8rtl(p+1)

6 6

(e 1>>; G Wﬂ |

which is established by [31, Remark 5].

y l(mﬁ' @) +1#" <6>|q>le . (u" (@) +5|7' <6>|q>3]

Corollary 3.19. Let us note A =0 and s = 1 in Theorem 3.14. Then, we
obtain

% P\ (o—+32§> o (20—;5)} ~ ;(gaj;i [Jgj((mjgﬁ(a)}’
(6—0)

9 [(901 (av Oap) + Y3 (av Oap))
y KW' <a>|q+|f'<5>q)q . <|f/ (@) +5|F <5>q)q]

<

18 18

+2¢p2 (o, p) <

(o)) + |7 <6>|‘1) 3]
! |
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Corollary 3.20. If it is chosen o« = 1 in Corollary 3.19, then the following
inequality holds:

;[y<a§26>+y(2a;6)] _610/5y(t)dt

< “;‘7) <p41r1>; [(59 (o)lq6+\ﬂ' (5)|q>3 . <|£/"’ (a)|q+65\y/ (5)|q)é

+2 2

1
1 <|ff’ (o) + |7 <6>|q> ]
Theorem 3.21. Let us consider that the assumptions of Lemma 3.1 are
provided. Let us also consider that the function |.#'|?, ¢ > 1 is s—convex on
[0,0]. Then, the following inequality holds:

’/\3’7 (o) + 2 _2” [32 (”;25) . (2”;5” LT (5)

S R 0+ 57 )]
(6—o0)
2

A5 (5, M7 (@) + A5 (5,0 |7 (6)|)7]

Q=

{42 0,0)) 5 [ (AT (5,0 |77 (6)|" + 45 (5,1) |7 (o))

Q=

(
(45 (0)'7F [ (45 (5) 17 ()" + 45 (5) |7 (0)]")
(

45 (9)1.7 (@) + A5 (5) |7 (6)|7) ]

Q=

(A5 (0,0))' 7 [ (45 (s, 0) |Z7 ()| + 4§ (5, 1) |7 (o))

(43 (5, 0) |7 ()" + A3 (s, ) |#' (9)]")7] }.
Proof. Using the facts of power-mean inequality in inequality (8), it follows

’w (o) + 2 _2” {54‘ (0226> + 7 (2“;5)] AT (9)

S T 0+ 57 )

<00 /|t”‘—>\|dt
0

1-1 1
q 1 q

. /|ta—A||y' (t5+ (1 — 1) o)|" dt
0
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1-1 1

3 4 3

4 /|t“—)\|dt /|
0 0

q 2

1 3

to — Z|dt /

2

1

3

2 q 2

3 1 3

to — Z|dt

- / 2 /
1 1

3 3

1
+ /|ta—(1—>\)|dt
2
3

+
w‘H\w\m

1
+ /|t0‘—(1—)\)|dt
2
3

q

t* = A[|F' (to + (1 —t) )" dt

Q=

1
t‘)‘f5 |F' (5 + (1 —t)o)|" dt
1
@ 1 / q
1 = |17 (to + (1= 1) )| dt

/|t“ —(1=N|]F" 5+ (1 —t)o)|"dt

1
/|t“ (=N F (to+ (1—1)8)|" dt

3

From the facts that |.#’|? is s-convex, we obtain

]w‘(ow 12 [y <U+25>+g<20+6)] F )

2 3

I'a+1)
2(6 — o)

3

Dt D) tre 7 6)+ 02 F (o) \

< (5;(’) /|t0uA|dt

0

-

| [l E 1 @O a1 o dr
0

1
1 1-3

q

1
q

n /|ta = A [t° 17 ()" + (1 = 1)° |77 (8)]"] dt
0
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2
t L dt /3
2
1
3

= | [P 1 @)+ (1= 0)° |7 (0)]]

1
+ /|ta—(1—/\)|dt
%

) /\t“ — Q=N F O + Q=) |F ()] at

2
3

Q=

2

- 1] [ 1 (0))7 + (1 8)° |7 (o)) at

_|_
ww\w\w

Jr
ww\w\m

Q=

Q=

1
a

1
[l =N 17 @ + 10 17 ) de

Q=

= 2027 .0) 5 [(45 (5 N 1F O + 45 (5,017 (0)]")
(A5 (5, M) |Z" ()" + 45 (5, |7 (6)|") "]
(45 ()% [ (45 (5) 17" (9)|" + A3 () |7 (0)]")*

.
.
+ (45 ()17 ()17 + A3 (5) |77 (9)]) ]
.
.

Q=

Q=

(42 (0)'7F [ (45 (9)17 ()" + 42 (5) |7 (o))
(48 (5) |7 ()" + A3 (5) |7 (9))")* ]}

Consequently, we obtain the desired result of Theorem 3.21. O

Corollary 3.22. Let us consider A\ = % in Theorem 3.21. Then, the fol-
lowing trapezoid type inequality holds:

) 2.7 0) + 357 (o)

<037 { (1 o ;))1_; (45 (s:3) 17 @ + 25 (5.5 ) 197 wq)é
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w (40 (n5) 17 @0+ 42 (55) 17 ) )]
+ (Ag (0))1_% [(Ag“ (s)[Z" (9" + AS (s)|.F (0)]%)
+ (45 (5)1F (0)I" + A5 (5) |7 (9)|") ]

1

(A? <5 ;) |7 ()" + Ag (S ;) P2 (U)q)é
+(A? (S’;>| (o))" + A (s ) 7 (5) ):;H

Corollary 3.23. If we select « = s = 1 in Corollary 3.22, then we have the
following trapezoid type inequality

)
J(U);J(d)—dia/f(t)dt

(6—0) [2]/5|F (5" +31]|F (0)| v 5|F (0)|" 4+ 31|.F" ()| @
= [9 K 36 > +( 36 ) 1

Remark 3.24. Consider A = % and s = 1 in Theorem 3.21. Then, the

following Newton type inequality holds:
1 26 2 )
‘8 {9(0)4—3 [9 <”+3 ) +£Z( T )} +9(5)}

Cla+1) [, >
*mw F(0) + J§- J()}‘

{0 02)) (o (o ) o)’
(i) )|

1

(A3 (0)'7F [(45 (177 B)I" + 43 (1|5 (0)]%)
+ (45 ()1 ()" + A3 ()7 (6)]')7]

\ (A? (1, ;) |7 (6)" + Ag (17;> 7 (U”q)é

5 (03)

Q=

Q

1 (ﬁ’(a)lq;rﬁ’w)lq)
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1
1 1 a
+ (45 (15) 17 @+ a5 (1.5) 17 o) ] } .
which is established by [16, Theorem 5].

Remark 3.25. If we select « = 1 in Remark 3.24, then we obtain the
following Newton type inequality

;[Q(U)”{y (022§>+g<20;6)] +3z(5>} _5iajfi(t)dt

- [ a7 [(251|y/(5)|Q+973|y/(a)|Q>3

- 2 32-9 72

72

v (1 O 417 (6>|q>51 |

which is presented by [31, Remark 4].

. (251 | F' (0)|? + 973 |.F' (5)|‘I>q]

Corollary 3.26. Let us consider A = 0 in Theorem 3.21. Then, the follow-

ing inequality holds:
20+ M'a+1) 4 o
L ( . )} R 8T )+ I F (o)

o+ 24
H G A
O (a7 0,0 [(4F (5.0)17 @)1 + 45 (5.0) |7 (0)]")

S((5—0

Q=

+ (45 (5,0) | (0)|" + A3 (5,0) |7 (9)[")*]
+ (A5 (0)' 7 [(45 (5) 17 )" + 43 (5) 17 (9)]")
+ (45 (5) 177 (0))" + A3 (5) |77 (9)]%) 7]
(42 (0,0)' 77 [(48 (5,0) |7 (9))" + AF (5,0) |7 (9)]")"

(45 (5,0) 17 ()" + 45 (5,0) |7 ()]") 7]}
Corollary 3.27. If we select « = s = 1 in Corollary 3.26, then we have
5
1], (o420 o (2046 1 >
- — t)dt
7 (550) 2 (55|22 [ 70

O—0) | (2l ()" +7|F ()"
< | (e e

Q=

2.7 (o) + 7|7 (5)]\ ¥
+( 9 )
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1 (W (@) +] 7" W)i

2 2

4. Concluding Remarks

Some trapezoid and Newton type inequalities are established for differ-
entiable s-convex functions involving Riemann-Liouville fractional integrals.
Moreover, we also give some new and previously obtained trapezoid and New-
ton type inequalities with the help of special cases of our main results.

In the forthcoming works, one can be generalized our results by using various
versions of convex function classes. The ideas and strategies for our results
about trapezoid and Newton type inequalities by Riemann-Liouville fractional
integrals may open new avenues for further research in this field. In addition,
one can obtain likewise inequalities of trapezoid and Newton type inequalities
via Riemann-Liouville fractional integrals for the case of differentiable s-convex
functions with the help of the quantum calculus. Furthermore, one can apply
these resulting inequalities to different types of fractional integrals.
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