DOI QR코드

DOI QR Code

CERTAIN SIMPSON-TYPE INEQUALITIES FOR TWICE-DIFFERENTIABLE FUNCTIONS BY CONFORMABLE FRACTIONAL INTEGRALS

  • Fatih Hezenci (Department of Mathematics, Faculty of Science and Arts, Duzce University) ;
  • Huseyin Budak (Department of Mathematics, Faculty of Science and Arts, Duzce University)
  • Received : 2022.11.10
  • Accepted : 2023.06.21
  • Published : 2023.06.30

Abstract

In this paper, an equality is established by twice-differentiable convex functions with respect to the conformable fractional integrals. Moreover, several Simpson-type inequalities are presented for the case of twice-differentiable convex functions via conformable fractional integrals by using the established equality. Furthermore, our results are provided by using special cases of obtained theorems.

Keywords

References

  1. J.E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
  2. M. Sarikaya, E. Set, and M. Ozdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, Journal of Applied Mathematics, Statistics and Informatics 9 (1) (2013), 37-45. https://doi.org/10.2478/jamsi-2013-0004
  3. F. Hezenci, H. Budak, and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (460), 2021.
  4. M.Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Mathematical and computer Modelling 54 (9-10) (2011), 2175-2182. https://doi.org/10.1016/j.mcm.2011.05.026
  5. D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus: Models and numerical methods, World Scientific: Singapore, 2016.
  6. G.A. Anastassiou, Generalized fractional calculus: New advancements and applications, Springer: Switzerland, 2021.
  7. N. Iqbal, A. Akgul, R. Shah, A. Bariq, M.M. Al-Sawalha, A. Ali, On Solutions of Fractional-Order Gas Dynamics Equation by Effective Techniques, J. Funct. Spaces Appl. 2022 (2022), 3341754.
  8. N. Attia, A. Akgul, D. Seba, A. Nour, An efficient numerical technique for a biological population model of fractional order, Chaos, Solutions & Fractals 141 (2020), 110349.
  9. A. Gabr, A.H. Abdel Kader, M.S. Abdel Latif, The Effect of the Parameters of the Generalized Fractional Derivatives On the Behavior of Linear Electrical Circuits, International Journal of Applied and Computational Mathematics 7 (2021), 247.
  10. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
  11. A.A. Abdelhakim, The flaw in the conformable calculus: It is conformable because it is not fractional, Fract. Calc. Appl. Anal. 22 (2019), 242-254. https://doi.org/10.1515/fca-2019-0016
  12. D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54 (2017), 903-917. https://doi.org/10.1007/s10092-017-0213-8
  13. A. Hyder, A. H. Soliman, A new generalized θ-conformable calculus and its applications in mathematical physics, Phys. Scr. 96 (2020), 015208.
  14. A.A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
  15. F. Jarad, E. Ugurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. 2017 (2017), 247.
  16. X. You, F. Hezenci, H. Budak, and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Mathematics 7 (3) (2021), 3959-3971. https://doi.org/10.3934/math.2022218
  17. H. Budak, F. Hezenci, and H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci. 44 (17) (2021), 12522-12536. https://doi.org/10.1002/mma.7558
  18. H. Desalegn, J.B. Mijena, E.R. Nwaeze, and T. Abdi, Simpson's Type Inequalities for s-Convex Functions via Generalized Proportional Fractional Integral, Foundations, 2 (3), (2022), 607-616. https://doi.org/10.3390/foundations2030041
  19. T. Abdeljawad, On conformable fractional calculus J. Comput. Appl. Math. 279 (2015), 57-66.  https://doi.org/10.1016/j.cam.2014.10.016