References
- J.E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
- M. Sarikaya, E. Set, and M. Ozdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, Journal of Applied Mathematics, Statistics and Informatics 9 (1) (2013), 37-45. https://doi.org/10.2478/jamsi-2013-0004
- F. Hezenci, H. Budak, and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (460), 2021.
- M.Z. Sarikaya and N. Aktan, On the generalization of some integral inequalities and their applications, Mathematical and computer Modelling 54 (9-10) (2011), 2175-2182. https://doi.org/10.1016/j.mcm.2011.05.026
- D. Baleanu, K. Diethelm, E. Scalas, and J.J. Trujillo, Fractional Calculus: Models and numerical methods, World Scientific: Singapore, 2016.
- G.A. Anastassiou, Generalized fractional calculus: New advancements and applications, Springer: Switzerland, 2021.
- N. Iqbal, A. Akgul, R. Shah, A. Bariq, M.M. Al-Sawalha, A. Ali, On Solutions of Fractional-Order Gas Dynamics Equation by Effective Techniques, J. Funct. Spaces Appl. 2022 (2022), 3341754.
- N. Attia, A. Akgul, D. Seba, A. Nour, An efficient numerical technique for a biological population model of fractional order, Chaos, Solutions & Fractals 141 (2020), 110349.
- A. Gabr, A.H. Abdel Kader, M.S. Abdel Latif, The Effect of the Parameters of the Generalized Fractional Derivatives On the Behavior of Linear Electrical Circuits, International Journal of Applied and Computational Mathematics 7 (2021), 247.
- R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
- A.A. Abdelhakim, The flaw in the conformable calculus: It is conformable because it is not fractional, Fract. Calc. Appl. Anal. 22 (2019), 242-254. https://doi.org/10.1515/fca-2019-0016
- D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo 54 (2017), 903-917. https://doi.org/10.1007/s10092-017-0213-8
- A. Hyder, A. H. Soliman, A new generalized θ-conformable calculus and its applications in mathematical physics, Phys. Scr. 96 (2020), 015208.
- A.A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.
- F. Jarad, E. Ugurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Difference Equ. 2017 (2017), 247.
- X. You, F. Hezenci, H. Budak, and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Mathematics 7 (3) (2021), 3959-3971. https://doi.org/10.3934/math.2022218
- H. Budak, F. Hezenci, and H. Kara, On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci. 44 (17) (2021), 12522-12536. https://doi.org/10.1002/mma.7558
- H. Desalegn, J.B. Mijena, E.R. Nwaeze, and T. Abdi, Simpson's Type Inequalities for s-Convex Functions via Generalized Proportional Fractional Integral, Foundations, 2 (3), (2022), 607-616. https://doi.org/10.3390/foundations2030041
- T. Abdeljawad, On conformable fractional calculus J. Comput. Appl. Math. 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016