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MILNE TYPE INEQUALITIES FOR DIFFERENTIABLE
s~-CONVEX FUNCTIONS

MERIEM DJENAOUI AND BADREDDINE MEFTAH*

Abstract. In this paper, a new identity is given. On the basis of this
identity, we establish some new estimates of Milne’s quadrature rule, for
functions whose first derivative is s-convex. We discuss the cases where
the derivatives are bounded as well as Lipschitzian. Some illustrative
applications are given.

1. Introduction

Definition 1.1. [12] A function f : I — R is said to be convex, if

fltz+(1—t)y) <tf(x)+(1—1) fy)
holds for all x,y € I and all t € [0,1].

The fundamental inequality for convex functions is undoubtedly the Hermite-
Hadamard inequality, which can be stated as follows: For every convex function
f on the interval [a, b] with a < b, we have

b
(1) f (282 < ﬁ/ F (2) de < L@H1@®)

If the function f is concave, then (1) holds in the reverse direction see [5, 7].

The concept of convexity plays an important and very central role in many
areas, such as economics, finances, optimization, and game theory. Due to its
diverse applications this concept has been extended and generalized in sev-
eral directions. Among those generalization, we note the s-convexity, which is
defined as follows

Definition 1.2. [3] A nonnegative function f : I C [0,00) — R is said to
be s-convex in the second sense for some fixed s € (0, 1], if

fltz+ (1 =t)y) <t°f(z)+ (1 —1)°f(y)
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holds for all z,y € I and t € [0, 1].

Obviously, convexity has a close relationship in the development of the the-
ory of inequalities, which is an important tool in the study of the properties
of solutions of differential equations as well as in the error estimates of quad-
rature formulas. Indeed, several problems in applied mathematics as well as
in sciences engineering come back to evaluation of integrals by adapting some
quadrature. The wide family mostly used is the so-called Newton-Cotes quad-
rature (open or closed), it depends on the endpoints of the given interval if it
intervenes in the approximation formula (closed) or not (open). Concerning
some papers dealing with some quadrature see [1, 2, 4, 6, 8, 9, 10, 11, 13, 14]
and references therein.

The most famous Newton-Cotes quadrature involving three-point is Simp-
son’s inequality which can be described as

b
E(F@+4f (54) 4 £ 0) = s [ £ o] < G |19

where f is four-times continuously differentiable function on (a,b), and

7] =z, [ )]

z€(a,b)

In this paper, we establish a new identity. On the basis of this identity,
we derive new estimates of Milne’s quadrature rule, for functions whose first
derivative is s-convex. We also discuss the cases where the derivatives are
bounded as well as Lipschitzian. At the end, some illustrative applications of
our results given.

2. Main results

In order to prove our results, we need the following lemma

Lemma 2.1. Let f : I C R — R be a differentiable function on I°, a,b € I°
with a < b, and f' € L' [a,b], then the following equality holds

b
L(2f (a) - F (%) + 27 (b)) —ﬁ/f(wdu
1 a
=bza "(A—t)a+teb) dt
wfed

1
bT/t—&- ((1—t) %52 + tb) dt.
0
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Proof. Let
1
I :/(t— D (A —t)a+teE)dt
0

and

o
|

/(t+§)f’ ((1—1t) %£2 +tb) at.
0
Integrating by parts I, we get

:fﬁf(%b)+ﬁf(a)f%/f((lft)a+t“7+b)dt

@ —ial @ - waf () - (&) [1©d

Similarly, we have

1
h:gﬂu@ﬂ«r%ﬂ$+@ﬁ{7%/ﬂu4ﬂ#+@ﬁ

0
= (1) F0) = 2 (3) 7 (44) = 22 [ £ (=023 + )
0

3 =stal O - skl () - (%) [ 1@

atb
2
Summing (2) and (3), and then multiplying the result by bTTa, we get the
desired result. O

Theorem 2.2. Let f : [a,b] = R be a differentiable function on (a,b) such
that f' € L'[a,b] with 0 < a < b. If |f'| is s-convex in the second sense for
some fixed s € (0, 1], then we have

b
L(2f (a) — f (252) +2f (b)) fﬁ/f(u)du

IA

b—a 4s5+5 2s5+10 a+b 45+5
b2t (sl I @)+ 525580 | ()| + sl 1 O)]) -
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Proof. From Lemma 2.1, properties of modulus, and s-convexity in the sec-
ond sense of |f’|, we have

b
%(2f(a)—f(“7“’)+2f(b))—ﬁ/f(u)du

1
SU«/MﬁMMﬂ4M+ﬁ%W
0

1
/|t+§||f’( 1—t)“2+”+tb)|dt)

—be "(A—t)a+teg)|dt
[Jo-s

+ [ t+3) (- a+b+tb)|dt)

[
(/ O° 1 @]+ 0| (<52
) 0
s [ @a-o s g

0

=57 (f’ )

+ [/ (437

<7

c~
.J>

)|+ 1 (0)]) dt)

(L= dt+ [ (45)]

1
(1L—t)"dt+ |f (b)| tSdt)
[
1
=7 ((If )| +1f (b / Lyesdt + 2| f (et |/ tSdt)

0
__b—a 4545 25410 a 4s+5
4 (3(s+1;r(s+2) |f (a)| + 3(s+1J)r(s+2) |f/ (T)| + 3(s+1;r(s+2) ‘f (b)D )

where we have used the fact that

(3 —t)t°at

o\»—t

1/
e

1 1

(4) /(g—t)(l—t)sdtz/(t+§)t8dt:%

0 0
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and

1

1

4 s _ s+5

(5) /g ) t°d _/ t+3)(1—t)dt = 3(s+f§(s+2>
0 0

The proof is completed. O

Corollary 2.3. In Theorem 2.2, if we use the s-convexity of | f'| i.e. | f' (4£2)| <
gl—s | (@[+]F'®)]
1+s

, then we obtain

b
L(2f (a) — f (452) + 2f (b)) —ﬁ/f(u)du

—a (2°7°(s+5)+(4s+5)(s+1)
<tz (LUt ) (1 () 4| (8)])
Corollary 2.4. In Theorem 2.2, if we take s = 1, then we get

b

L(2f (a) — f (252) + 2f (b)) —ﬁ/f(U)du

a
<t GBI @]+ 4l (452) ]+ 31 ()
Moreover, if we use the convexity of |f'|, then we obtain

b

L(2f (a) — f (2£2) +2f (b)) —ﬁ/f(U)du

a

<29 (1 ()] + | (D))

Remark 2.5. In Corollary 2.7 if we assume that | f'| is bounded i.e.| f' ()| <
sup |f'(z)| =|f'|l, then we obtain Theorem 3.1 from [1].

z€[a,b]

Theorem 2.6. Let f : [a,b] — R be a differentiable function on (a,b) such
that f' € L' [a,b] with 0 < a < b. If |f|? is s-convex in the second sense for
some fixed s € (0, 1] where ¢ > 1 with % + % =1, then we have

%(2f(a)—f(“7“’)+2f(b))—ﬁ/f(u)du

1 1
< ()t ( (e (reprror) ),
S iprns U 51 sT1
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Proof. From Lemma 2.1, properties of modulus, Holder’s inequality, and
s-convexity in the second sense of |f’|?, we have

%(2f(a)—f(a7+”)+2f(b))—ﬁ/f(u)du

1
P

1 1
<boe /(g—t)”dt /|f’((1—t)a+t“7+b)‘th
0 0

1 1 a
+ /(t+§)”dt /|f’ —t) <+ tb)|" dt

0 0

) 1
b—a 4p+1—1 P _ q s | g (atb)|9
<t () L[ (=0n i@l e | () ) ae
0
1

1 q
s [ (a=oir el el or) a

0

1 1
o ba (w7 [ (@ ()] 17 (=2) "4 )]
T aptnr \ T S+1 ) )
O

Corollary 2.7. In Theorem 2.6, if we use the s-convexity of |f'|? ie

/ q ’ q
|/ (GTH))‘(I < 21_3%, then we obtain

1 1
W [ (E)lf @2 o)) (2 @ )| O] ) 1
(s+1)* (s+1)* )



Milne’s Inequalities 331

Corollary 2.8. In Theorem 2.6, if we take s = 1, then we get

LS (@) - F(54) + 2 ) - o5 [ 1 )

GO

1
() ol
2
Moreover, if we use the convexity of |f’|?, then we obtain
/ f
1 = 1

<_b-a (41’“71)5 3|/ ()| "+ (0)|* z n |£" @] +3['®)" ) _

Taprnr \ 4 4
Theorem 2.9. Let f : [a,b] = R be a differentiable function on (a,b) such

that f' € L' [a,b] with 0 < a < b. If |f'|? is s-convex in the second sense for
some fixed s € (0,1] where ¢ > 1, then we have

W=
—~
[\
~
S
SN~—
I
~
—
ot

“fb) 21 (b)

b
L(2f (a) — f (252) + 2f (b)) —ﬁ/f(U)du

Q=

b—a (5\1—% 4s+5 q 545 atb\ |9
< 4 (6) ((3(€+1)(s+2) ‘f/ (CL)‘ + 3(s+145(s+2) |f, (%)| )
1
s+5 a+b\ |9 4s+5 q\a
+ (3(s+1J)r(s+2) |f(42)|" + sty | (0] ) > :

Proof. From Lemma 2.1, properties of modulus, power mean inequality, and
s-convexity in the second sense of |f’|?, we have

b
L (2f (a) — f (2£2) + 2f (b)) —ﬁ/f(u)du

/ (1 —t)a+tef?)|dt
0

1
+/t+ )£ (1 —t) <52 + tb) | at
0

/\
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<bpe (](é—t)dt) - (7 (A —t)a+tef)| dt)
+(/(t+§)dt) q(/t+ V£ (1 —t) <5 + 1) | dt
<bze(3)' (/(3 O (=017 @+ | (;);)dt)

- (/ (t+3) (=07 7 (=) + 17 ®)) dt)

Q=

Q=

5

6

(lf’(a)iq/<3 -0 a+|r (=) [ (3-0) mt)

TG DI RS ) dt + | (b)) (t—l-l)tsdt)
] Jon

1
:bTTa (%)1 ! <(3‘(Sﬁ)+(2+2)f'(a)q WU (i)|>

s+5 a+b\ |9 4s+5 q
+ (st [ ()" + st 1 O1) )

where we have used (4) and (5). The proof is achieved. O

Q=

Q=

Corollary 2.10. In Theorem 2.9, if we use the s-convexity of |f'|?, then
we obtain

b
%(2f(a)ff(“7+”)+2f(b))*ﬁ/f('u}du

Q=

b—a (5\173% (45+5) (s+1)+2" 75 (s+5) | ¢ q 2179 (545) / q
<45 (8) (( ey A O B e RO

1
2175 (545 q |, (45+5)(s+1)+2' "5 (s+5) | o q\ 49
b (R 1 @ + e ) 7).
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Corollary 2.11. In Theorem 2.9, if we take s = 1, then we get

b
L(2f (a) — f (252) + 27 (b)) —ﬁ/f(u)du

1 1
s(6-a) ((sf«wuzvxuzb)r)q N (2f’(“§b)q+3f’<b>lq) )
24 5 5 :

Moreover, if we use the convexity of |f’|?, then we obtain

IN

b
(6) L(2f (a) — £ (552) +2f (B)) — £ / f (u) du

1 1

5(b—a A @+ @) f'@)|*+4] " ®)]" |
§<24><( "+ |> +(| 44 |> )

3. Further results

Theorem 3.1. Let f : [a,b] — R be a differentiable function on (a,b) such
that f' € L' [a,b] with 0 < a < b. If there exist constants —oo < m < M < +00
such that m < f'(z) < M for all x € [a,b], then we have

5(2F (@)= £ (4) + 20 0) = 5 [ F ()| < B0=sifpi=m)

Proof. From Lemma 2.1, we have

I
us‘l
)
o\»—‘
—~
-
|
ol
SN—
—
i)
—
—
—
|
~
S~—
=)
+
~
)
m‘+
o
SN—
3
o+
g
+
‘3
o[-
=
S—
S
~
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1 1
bT/ (1 —t)a+tegt) — mEM) gp 4 bae EM/(t—g)dt
0 0
1 1
rige [ ) (7 (=024t + ) - 5y ar g tgempt [ (e )
0 0
1
bT/ "((1—t)a+tet) — mEM) gy
0
1
+”T/ (1L —1) =52 +tb) — =58 ) dt
0

Applying the absolute value to both sides of (7), we get

1

® e [ 1) |7 (- 0 5+ ) — 2
0

Obviously, since m < f/(x) < M for all x € [a,b], we have

(9) |f (1 —t)a+teft) — mEM) < ,

and

10 (=23 4 ) - | <

Using (9) and (10) in (8) we get

L(2f (a) — f (2£2) + 2f (b)) —ﬁ/f(u)du

1
< (bma)M-m) (/ dt+/(t+§)dt>

:5(b a)(M—m)
24 )

which is the desired result.
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Theorem 3.2. Let f : [a,b] — R be a differentiable function on (a,b) such

that f' € L' [a,b] with 0 < a < b. If f’ is L-Lipschitzian function on [a, b], then
we have

7(b—a)?
< o L

%@fﬁw—f(%#)+2f®»——ﬁ{/fWNw

Proof. From Lemma 2.1, we have

1
—tze (= 4) £ (- t)a+eegt) a
’ 1
g [ )7 (- o v o) ae
0
=t (/(t—é‘) (F (A =Da+te) = f'(a) + f'(a)) dt
0
+/(t+%) (f’((lt)“;lwrtb)f’(b)+f’(b))dt)
0
=tge (/ (t=3) (F (A =t)a+t23t) — () dt
0
+/(t+%)(f’((1—t)“7+b+tb)—f’(b))dt
0
1 1
+f’(b)/(t+§)dt+f’(a)/(t—é)dt)

0 0

) (f' (1= t)a+ L) — ' (a)) dt

Il
o
4;‘\

2
~
oS~~——0 =

—
-
|
[SUIN
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By applying the absolute value of both sides of (11), and using the fact that
f' L-Lipschitzian function it yields

b
3 (2f (a) = f(52) +27 () —ﬁ/ﬂu)du
stz ([ G017 (@ - Da+is) - f @] a
0

s eI -0 m) - F ola 3170 -1 @

1 1
<l-alp /(g—t)tdt+/(t+§) (1—t)dt+3
0 0

7(b—a)?
24a L,

which is the desired result. O

4. Applications

4.1. Milen’s quadrature formula
Let T be the partition of the points ¢ = x¢9 < z1 < ... < z, = b of the
interval [a, b], and consider the quadrature formula

b

/f(u)duzA(f,THR(f,T),

where
n—1

A(FT) = Yo (o (@) — f (54522 ) + 2f (ai4a)

i=0
and R (f,YT) denotes the associated approximation error
Proposition 4.1. Let n € N and f : [a,b] — R be a differentiable function

on (a,b) with 0 < a < b and f' € L[a,b]. If |f’| is s-convex function in the
second sense for some fixed s € (0, 1], we have

n—1
Tip1—x4)>
R(F0 <3 it (it I @)
=0

25410
+ 3651 (552)

(25 |+ i | ).
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Proof. Applying Theorem 2.2 on the subintervals [z;, z;41] (¢ = 0,1,...,n — 1)
of the partition T, we get

Tit1

520 ) = £ (25) 2f (@) - i [ P

b—x; s s zi+T; s
<t (ot I (@)l + 52l | (2252 ) | + it | (@)l -
(12)

Multiplying both sides of (12) by (z;+1 — 2;), and then summing the obtained
inequalities for all ¢ = 0,1, ...,n — 1 and using the triangular inequality, we get
the desired result. O

4.2. Application to special means

For arbitrary real numbers a,b we have:

The Arithmetic mean: A (a,b) = %52,

The Geometric mean: G (a,b) = Vab, a,b > 0.

ppt1l_gpt1

1
m)p, a,b > O,G 7é b and

The p-Logarithmic mean: L, (a,b) = (
p € R\ {-1,0}.

Proposition 4.2. Let a,b € R with 0 < a < b, then we have

4 (a2,52) — A2 (a,b) — 313 (a, )| < 2= ((W;W)q N (anW)q) .

Proof. The assertion follows from inequality (6) of Corollary 2.11, with ¢ >
2, applied to the function f (z) = %xQ. O

5. Conclusion

In the study, we have considered the Milne type integral inequalities, which
the main results of the paper can be summarized as follows:

1. A new identity regarding Milne type inequalities is proved.

2. Some new Milne type inequalities for functions whose first derivatives
are s-convex are established.

3. Some Milne type inequalities for functions whose first derivatives are
bounded as well as L-Lipschitzian are discussed.

4. Applications of our findings are provided.
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