SOME RESULTS ON PRECONVEXITY SPACES

WON KEUN MIN

ABSTRACT. In this paper, we introduce the concepts of preconvexity neighborhoods, c-concave functions. We study some properties for c-convex functions, and characterize c-convex functions and c-concave functions by using the preconvexity neighborhoods.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set P(X) of a set X and investigated some properties. He showed that a preconvexity on a set yields a convexity space in the same manner as a proximity [4] yields a topological space.

In this paper, we study some basic properties on preconvexity spaces and c-convex functions. We define the notion of preconvex neighborhood in the same way as a proximity neighborhood is defined by a proximity, and characterize c-convex functions and c-concave functions by using the preconvex neighborhoods.

Definition 1.1 ([1]). Let X be a nonempty set. A binary relation σ on P(X) is called a preconvexity on X if the relation satisfies the following properties; we write $x\sigma A$ for $\{x\}\sigma A$:

- (1) If $A \subseteq B$, then $A \sigma B$.
- (2) If $A\sigma B$ and $B = \emptyset$, then $A = \emptyset$.
- (3) If $A\sigma B$ and $b\sigma C$ for all $b \in B$, then $A\sigma C$.
- (4) If $A\sigma B$ and $x \in A$, then $x\sigma B$.

The pair (X, σ) is called a preconvexity space. A convexity is a reflexive and transitive relation. In a preconvexity space (X, σ) , $G(A) = \{x \in X : x\sigma A\}$ is called the convexity hull of a subset A. A is called convex[1] if G(A) = A.

Theorem 1.2 ([1]). For a preconvexity space (X, σ) ,

(1) $G(\emptyset) = \emptyset$.

Received July 18, 2006; Revised November 22, 2007.

 $2000\ Mathematics\ Subject\ Classification.\ 52A01.$

Key words and phrases. preconvexity, preconvex neighborhood, c-concave function.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

- (2) $A \subseteq G(A)$ for all $A \subseteq X$.
- (3) If $A \subseteq B$, then $G(A) \subseteq G(B)$.
- (4) G(G(A)) = G(A) for $A \subset X$.

Theorem 1.3 ([1]). If σ is a preconvexity on X and $A \subseteq X$, then $G(A) = \bigcap \{C : G(C) = C \text{ and } A \subseteq C\}.$

Theorem 1.4 ([1]). Let σ be a preconvexity on X and $A, B \subseteq X$. Then

- (1) $A \sigma B$ if and only if $A \subset G(B)$.
- (2) $A \sigma B$ if and only if $G(A) \sigma G(B)$.

In [3] Kay and Womble introduced the following definition:

A family \mathcal{C} of subsets of a set X is termed a convexity structure for X, and the pair (X,\mathcal{C}) is called a convexity space, whenever the following two conditions hold:

- (a) \emptyset and X belong to \mathcal{C} .
- (b) $\cap_{F \in \mathcal{F}} F \in \mathcal{C}$ for each subfamily $\mathcal{F} \subset \mathcal{C}$.

If in a preconvexity space (X, σ) , we take $\mathcal{C} = \{C : C \subseteq X \text{ and } G(C) = C\}$, then \mathcal{C} is a convexity structure for X called the convexity structure determined [3] by σ and (X, \mathcal{C}) is a convexity space.

A function $h: P(X) \to P(X)$ is called a hull operator [3] on X if the following conditions are satisfied:

- (1) $h(A) \supseteq A$.
- (2) $B \supseteq A$ implies $h(B) \supseteq h(A)$.
- (3) h(h(A)) = h(A).
- (4) $h(\emptyset) = \emptyset$.

Let h be a hull operator on X. A preconvexity σ is said to be associated with the convexity space (X,h) if $x \in h(A)$ implies $x\sigma A$. If in addition, $x\sigma A$ implies $x \in h(A)$, then σ is said to be compatible [1] with (X,h).

Definition 1.5 ([1]). Let $(X, h_1), (Y, h_2)$ be convexity spaces. A function $f: X \to Y$ is said to be a convex function on X if for each $A \subseteq X$, $f(h_1(A)) \subseteq h_2(f(A))$. The function f is said to be concave if for each $A \subseteq X$, $f(h_1(A)) \supseteq h_2(f(A))$.

Definition 1.6 ([1]). Let σ_1, σ_2 be two preconvexities on the convexity spaces (X, h_1) and (Y, h_2) , respectively. A function $f: X \to Y$ is said to be c-convex if $A\sigma_1B$ implies $f(A)\sigma_2f(B)$. The function f is a c-isomorphism or convexeomorphism if and only if f is one-to-one, onto and both f and f^{-1} are c-convex.

2. Main results

Lemma 2.1. Let (X, σ) be a preconvexity space and $A, B \subseteq X$. Then $A \not \sigma B$ if and only if there is an element $x \in A$ such that $x \not \sigma B$.

Proof. It is obvious from Theorem 1.4(1).

Lemma 2.2. Let (X, σ) be a preconvexity space. Then for all $A \subseteq X$, $G(A)\sigma A$.

Proof. From $G(A)\sigma G(A)$ and Definition 1.1(3), it follows the result.

Definition 2.3. Let (X, σ) be a preconvexity space and $A \subseteq X$. A is called a preconvexity neighborhood of x, denoted by $x \triangleleft A$, if $x \not \sigma(X - A)$. A is called a preconvexity neighborhood of B, denoted by $B \triangleleft A$, if $B \not \sigma(X - A)$.

In a convexity space C, a subset A in X is called a convexity neighborhood of x if there exists a $F \in C$ such that $x \in X - F \subseteq A$.

Theorem 2.4. Let (X, σ) be a preconvexity space and $A \subseteq X$. For $x \in X$, A is a preconvexity neighborhood of x if and only if it is a convexity neighborhood of x in the convexity space determined by σ .

Proof. Let $x \triangleleft A$; then by Definition 2.3, $x \triangleleft A$ if and only if $x \not p(X-A)$ if and only if $x \not \in G(X-A)$ if and only if $x \in X - G(X-A) \subseteq A$. Thus we get the result because G(X-A) is a convex set.

Theorem 2.5. Let (X, σ) be a preconvexity space and $A \subseteq X$. If A is a convexity neighborhood of $B \subseteq X$, then it is a preconvexity neighborhood of B in the convexity space determined by σ .

Proof. Let A be a convexity neighborhood of $B \subseteq X$; then there is a convex set $F \subseteq X$ such that $B \subseteq X - F \subseteq A$. If $x\sigma(X - A)$ for all $x \in B$, then $B\sigma(X - A)$. Thus $B \subseteq G(X - A) \subseteq G(F) = F$. This is a contradiction. Hence $x \not \sigma(X - A)$ for some $x \in B$, and so $B \not \sigma(X - A)$.

In the following example we can show that the converse in Theorem 2.5 is not always true.

Example 2.6. Let $X = \{a, b, c, d\}$ and define a relation σ on P(X) given by $\{d\}\sigma\{a\}, \{d\}\sigma\{c\}, X\sigma\{b\}$ and $X\sigma\{a, c, d\}$, and the general condition that $A\sigma B$ if $A \subseteq B$. Then the relation σ is a preconvexity on X and $G(\emptyset) = \emptyset$, G(X) = X, $G(\{d\}) = \{d\}$, $G(\{a, d\}) = \{a, d\}$, $G(\{c, d\}) = \{c, d\}$. The convexity structure determined by σ is $\mathcal{C} = \{X, \emptyset, \{d\}, \{a, d\}, \{c, d\}\}$. Let $A = \{a, d\}$ and $B = \{a, b, d\}$; since $A = \{a, d\}$ $\neq \{c\} = X - B$, B is a preconvexity neighborhood of A but it is not a neighborhood of A in the convexity space \mathcal{C} .

Theorem 2.7. For a preconvexity space (X, σ) if $A \triangleleft B$ and $B \subseteq D$, then $A \triangleleft D$.

Proof. If $A \not\triangleleft D$, then $A \sigma(X - D)$. Say $B \subseteq D$; then it is $A \not\triangleleft B$ from the transitive property of preconvexity.

Theorem 2.8. Let $f: X \to Y$ be a bijective function on two preconvexities (X, σ) and (Y, μ) . Then f is c-convex if and only if for $C, D \subseteq Y$ whenever $C \triangleleft D$, $f^{-1}(C) \triangleleft f^{-1}(D)$.

Proof. (\Rightarrow) Assume $f^{-1}(C) \not \triangle f^{-1}(D)$ for $C, D \subseteq Y$. Then $f^{-1}(C)\sigma(X - f^{-1}(D))$. Since f is surjective and c-convex, it follows $C\mu(Y - D)$. Hence $C \not \triangleleft D$.

(\Leftarrow) Assume $f(A) \not \mu f(B)$ for $A, B \subseteq X$. Then by Lemma 2.1, there exists an element $y \in f(A)$ such that $y \not \mu f(B)$. Let f(x) = y for some $x \in A$. We can say $y \triangleleft (Y - f(B))$ because of $y \not \mu f(B) = Y - (Y - f(B))$, and so $f^{-1}(y) \triangleleft (X - B)$. Now we get $x = f^{-1}(y) \not \sigma B$ from definition of the preconvexity neighborhood. Hence $A \not \sigma B$.

Theorem 2.9. Let $f: X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then f is c-convex if and only if G(f(G(A))) = G(f(A)) for all $A \subset X$.

Proof. (\Rightarrow) Let f be c-convex and $y \in G(f(G(A)))$; then $y \mu f(G(A))$. Since f is c-convex, from Lemma 2.2, we get $f(G(A)) \mu f(A)$. The transitive property gives $y \mu f(A)$. Thus $G(f(G(A))) \subseteq G(f(A))$. The other inclusion is obvious.

 (\Leftarrow) Suppose that G(f(G(A))) = G(f(A)) for all $A \subseteq X$. Let $A \sigma B$ for $A, B \subseteq X$; then by Theorem 1.4(1) and hypothesis, we get the following relationship:

$$f(A) \subseteq G(f(A)) \subseteq G(f(G(B))) = G(f(B)).$$
 By Theorem 1.4(1), $f(A)\mu f(B)$.

From Theorem 2.9, we get the following corollary:

Corollary 2.10 (Theorem 12 [1]). Let σ_1 and σ_2 be compatible preconvexities on the convexity spaces (X, h_1) and (Y, h_2) , respectively. Then $f: X \to Y$ is convex if and only if f is c-convex.

Theorem 2.11. Let $f: X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following are equivalent:

- (1) f is c-convex.
- (2) For $A, B \subseteq X$ if $A \sigma B$, then $f(G(A)) \mu G(f(B))$.
- (3) $f(G(A))\mu f(A)$ for $A \subset X$.

Proof. (1) \Rightarrow (2) Let $A \sigma B$ for $A, B \subseteq X$; then by Theorem 1.4(2) and Lemma 2.2, $G(A) \sigma G(B) \sigma B$. Since f is c-convex, $f(G(A)) \mu f(B) \mu G(f(B))$.

- $(2) \Rightarrow (3)$ It is obvious from Lemma 2.2.
- $(3) \Rightarrow (1)$ Let $A \sigma B$ for $A, B \subseteq X$; then $A \subseteq G(B)$, and so $f(A) \subseteq f(G(B))$. Hence f is c-convex by Definition 1.1(1) and condition (3).

Definition 2.12. Let σ_1, σ_2 be two preconvexities on the preconvexity spaces X, Y, respectively. A function $f: X \to Y$ is said to be c-concave if for $C, D \subseteq Y$ whenever $C\sigma_2D$, $f^{-1}(C)\sigma_1f^{-1}(D)$.

Theorem 2.13. Let $f: X \to Y$ be a bijective function on two preconvexity spaces (X, σ) and (Y, μ) . Then f is c-concave if and only if for $A, B \subseteq X$ whenever $A \triangleleft B$, $f(A) \triangleleft f(B)$.

Proof. (\Rightarrow) Let $f(A) \not\triangleleft f(B)$ for $A, B \subseteq X$; then $f(A)\mu(Y - f(B))$. Since f is c-concave, we have $A\sigma(X - B)$, and so $A \not\triangleleft B$.

(⇐) Let $f^{-1}(C) \not p f^{-1}(D)$; then there exists an element $x \in f^{-1}(C)$ such that $x \not p f^{-1}(D)$, and let f(x) = y. It follows $x \triangleleft (X - f^{-1}(D))$, and so $y \triangleleft (Y - D)$. By Lemma 2.1, we get $C \not p D$.

Theorem 2.14. Let σ_1 and σ_2 be compatible preconvexities on the convexity spaces (X, h_1) and (Y, h_2) , respectively and let $f: X \to Y$ be a bijective function. Then f is c-concave if and only if it is concave.

Proof. (\Rightarrow) Let $y \in h_2(f(A))$ for $A \subseteq X$; then $y\sigma_2f(A)$. Since f is c-concave and injective, it follows $f^{-1}(y)\sigma_1A$. Since σ_1 is compatible with h_1 , we have $f^{-1}(y) \in h_1(A)$ and so $y \in f(h_1(A))$.

 (\Leftarrow) Let $f^{-1}(C) \not\sigma_1 f^{-1}(D)$ for each $C, D \subseteq Y$; then there exists $x \in f^{-1}(C)$ such that $x \not\sigma_1 f^{-1}(D)$, and so $x \not\in h_1(f^{-1}(D))$. Since f is concave and surjective, $f(x) \not\in h_2(f(f^{-1}(D))) = h_2(D)$. Thus we get $f(x) \not\sigma_2 D$, and so $C \not\sigma_2 D$.

Corollary 2.15. Let $f: X \to Y$ be a bijective function on two preconvexity spaces (X, σ) and (Y, μ) . Then f is a convexeomorphism if and only if f is c-convex and c-concave.

Proof. From Definition 1.6, we get the result.

Theorem 2.16. Let $f: X \to Y$ be a function on two convexity spaces (X, h_1) and (Y, h_2) . Then f is concave if and only if $f(h_1(A)) = h_2(f(h_1(A)))$ for $A \subset X$.

Proof. (\Rightarrow) Let f be a concave function; then $h_2(f(h_1(A))) \supseteq f(h_1(A)) \supseteq h_2(f(h_1(A)))$ for $A \subseteq X$. Hence we get $f(h_1(A)) = h_2(f(h_1(A)))$. \Box

Theorem 2.17. Let $f: X \to Y$ be a function on two convexity spaces (X, C_1) and (Y, C_2) , then f is concave if and only if for each $A \in C_1$, $f(A) \in C_2$.

Proof. It is obvious from Theorem 2.16.

Acknowledgements. I thank the referee for some useful comments on the paper.

References

- [1] M. D. Guay, Introduction to the theory of convexity-topological spaces, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 521-545, Colloq. Math. Soc. Janos Bolyai, 23, North-Holland, Amsterdam-New York, 1980.
- [2] ______, An introduction to preconvexity spaces, Acta Math. Hungar. 105 (2004), no. 3, 241-248.
- [3] D. C. Kay and E. W. Womble, Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers, Pacific J. Math. 38 (1971), 471-485.
- [4] S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 59 Cambridge University Press, London-New York, 1970.

DEPARTMENT OF MATHEMATICS
KANGWON NATIONAL UNIVERSITY
CHUNCHEON 200-701, KOREA

 $E ext{-}mail\ address: wkmin@kangwon.ac.kr$