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SOME RESULTS ON PRECONVEXITY SPACES

WonN KEuN MIN

ABSTRACT. In this paper, we introduce the concepts of preconvexity
neighborhoods, c-concave functions. We study some properties for c-
convex functions, and characterize c-convex functions and c-concave func-
tions by using the preconvexity neighborhoods.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a
binary relation on the power set P(X) of a set X and investigated some prop-
erties. He showed that a preconvexity on a set yields a convexity space in the
same manner as a proximity [4] yields a topological space.

In this paper, we study some basic properties on preconvexity spaces and c-
convex functions. We define the notion of preconvex neighborhood in the same
way as a proximity neighborhood is defined by a proximity, and characterize

c-convex functions and c-concave functions by using the preconvex neighbor-
hoods.

Definition 1.1 ([1]). Let X be a nonempty set. A binary relation o on P(X)
is called a preconvexity on X if the relation satisfies the following properties;
we write o A for {z}o A:

(1) If A C B, then AoB.

(2) If AoB and B =0, then A = 0.

(3) If AoB and boC for all b € B, then AcC.

(4) f AoB and z € A, then zoB.

The pair (X, o) is called a preconvexity space. A convexity is a reflexive and
transitive relation. In a preconvexity space (X,0), G(A) = {z € X : zoA} is
called the convexity hull of a subset A. A is called convex{1] if G(A) = A.

Theorem 1.2 ([1}). For a preconvezity space (X, o),
(1) G() = 0.
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(2 ACG(A) forall AC X.
(3) If AC B, then G(A) C G(B).
(4) G(G(A)) =G(A) for AC X.

Theorem 1.3 ([1)). If o is a preconverity on X and A C X, then G(A) =
N{C:G(C)=C and AC C}.

Theorem 1.4 ([1]). Let o be a preconvezity on X and A,B C X. Then

(1) Ao B if and only if A C G(B).
(2) AoB if and only if G(A)oG(B).

In [3] Kay and Womble introduced the following definition:

A family C of subsets of a set X is termed a convexity structure for X,
and the pair (X,C) is called a convexity space, whenever the following two
conditions hold:

(a) @ and X belong to C.

(b) NpexF € C for each subfamily F C C.

If in a preconvexity space (X, o), we take C = {C : C C X and G(C) = C},
then C is a convexity structure for X called the convexity structure determined
[3] by o and (X, () is a convexity space.

A function h : P(X) — P(X) is called a hull operator [3] on X if the
following conditions are satisfied:

(1) h(4) 2 A.

(2) B D A implies h(B) D h(A).
(3) h(h(A)) = h(A).

(4) h(0)=90.

Let h be a hull operator on X. A preconvexity o is said to be associated
with the convexity space (X, h) if # € h(4) implies zoA. If in addition, zo A
implies = € h{A), then o is said to be compatible [1] with (X, k).

Definition 1.5 ([1]). Let (X, h1), (Y, hs) be convexity spaces. A function
f:X — Y is said to be a convex function on X if for each A C X, f(h1(4)) C
ha(f(A)). The function f is said to be concave if for each A C X, f(h1(4)) 2
ha(f(A4)).

Definition 1.6 ([1]). Let 01,02 be two preconvexities on the convexity spaces
(X,h1) and (Y, hy), respectively. A function f : X — YV is said to be ¢
convex if Aoy B implies f(A)osf(B). The function f is a c-isomorphism or
convexeomorphism if and only if f is one-to-one, onto and both f and f~! are
¢-convex.

2. Main results

Lemma 2.1. Let (X,0) be a preconvezity space and A,B C X. Then A #B
if and only if there is an element x € A such that x ¢#B.

Proof. 1t is obvious from Theorem 1.4(1). a



SOME RESULTS ON PRECONVEXITY SPACES 41

Lemma 2.2. Let (X,0) be a preconvexity space. Then for all A C X, G(A)cgA.
Proof. From G(A)oG(A) and Definition 1.1(3), it follows the result. O

Definition 2.3. Let (X, o) be a preconvexity space and A C X. A is called a
preconvexity neighborhood of @, denoted by =z < A, if ¢ (X — A). A is called
a preconvexity neighborhood of B, denoted by B <1 A, if BF(X — A).

In a convexity space C, a subset A in X is called a convexity neighborhood
of z if there exists a F € C such that 1 € X — F C A.

Theorem 2.4. Let (X, o) be a preconvexity space and AC X. Forze X, A
15 a preconvexity neighborhood of x if and only if it is a convexity neighborhood
of x in the convezity space determined by o.

Proof. Let x <1 A; then by Definition 2.3, z <« A if and only if z (X — A) if
and only if z € G(X — A) if and only if z € X — G(X — A) C A. Thus we get
the result because G(X — A) is a convex set. 0

Theorem 2.5. Let (X,0) be a preconvezity space and A C X. If A is a
convezity neighborhood of B C X, then it is a preconvezity neighborhood of B
in the convexity space determined by o.

Proof. Let A be a convexity neighborhood of B C X; then there is a convex
set F/ C X such that BC X — F C A. If zo(X — A) for all z € B, then
Bo(X —A). Thus B C G(X — A) C G(F) = F. This is a contradiction. Hence
r #(X — A) for some z € B, and so B #(X — A). O

In the following example we can show that the converse in Theorem 2.5 is
not always true.

Example 2.6. Let X = {a,b,c,d} and define a relation ¢ on P(X) given by
{d}o{a}, {d}o{c}, Xo{b} and Xo{a, c,d}, and the general condition that AcB
if A C B. Then the relation o is a preconvexity on X and G(0) = 0, G(X) = X,
G({d}) = {d}, G({a,d}) = {a,d}, G({c,d}) = {¢,d}. The convexity structure
determined by o is C = {X,0,{d},{a,d},{c,d}}. Let A = {a,d} and B =
{a,b,d}; since A = {a,d} #{c} = X — B, B is a preconvexity neighborhood of
A but it is not a neighborhood of A in the convexity space C.

Theorem 2.7. For a preconvezity space (X,0) if A< B and B C D, then
A« D.

Proof. It A4D, then Ac(X — D). Say B C D ; then it is A AB from the
transitive property of preconvexity. |

Theorem 2.8. Let f: X — Y be a bijective function on two preconvezities
(X,0) and (Y,p). Then f is c-convex if and only if for C,D C Y whenever
C<aD, fHC)af (D).
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Proof. (=) Assume f~Y(C) Af~Y(D) for C,D C Y. Then f~1(C)o(X —
f~'(D)). Since f is surjective and c-convex, it follows Cp(Y — D). Hence
C 4D.

(«) Assume f(A) y/f(B) for A, B C X. Then by Lemma 2.1, there exists an
element y € f(A) such that y ¢/f(B). Let f(z) = y for some z € A. We can say
y<1(Y — f(B)) because of y ff(B) =Y — (Y - f(B)), and so f~(y) <(X — B).
Now we get ¢ = f~!(y) #B from definition of the preconvexity neighborhood.
Hence A #B. O

Theorem 2.9. Let f : X —'Y be a function on two preconvewity spaces (X, o)
and (Y,p). Then f is c-convez if and only if G(f(G(A4))) = G(f(A)) for all
ACX.

Proof. (=) Let f be c-convex and y € G(f(G(A))); then yuf(G(A)). Since f
is c-convex, from Lemma 2.2, we get f(G(A))uf(A). The transitive property
gives yuf(A). Thus G(f(G(A))) € G(f(A)). The other inclusion is obvious.

(<) Suppose that G(f(G(A))) = G(f(A)) for all A C X. Let AoB for
A, B C X; then by Theorem 1.4(1) and hypothesis, we get the following rela-
tionship:

£(4) € G(f(4)) C G(f(G(B))) = G(f(B)).

By Theorem 1.4(1), f(A)uf(B). |

From Theorem 2.9, we get the following corollary:

Corollary 2.10 (Theorem 12 [1]). Let 01 and o2 be compatible preconvezxities
on the convezity spaces (X, h1) and (Y, hs), respectively. Then f: X — Y is
convez if and only if f is c-convez.

Theorem 2.11. Let f : X — Y be a function on two preconvexity spaces
(X,0) and (Y, ). Then the following are equivalent:

(1) f is c-convex.
(2) For A,B C X if AoB, then f(G(A))uG(f(B)).
(3) F(GA)uf(A) for ACX.

Proof. (1) = (2) Let AoB for A, B C X; then by Theorem 1.4(2) and Lemma
2.2, G(A)oG(B)oB. Since f is c-convex, f(G(A)uf(B)uG(f(B)).

(2) = (3) It is obvious from Lemma 2.2.

(3) = (1) Let AoB for A,B C X; then A C G(B), and so f(4) C f(G(B)).
Hence f is c-convex by Definition 1.1(1) and condition (3). O

Definition 2.12. Let 01,0, be two preconvexities on the preconvexity spaces
X, Y, respectively. A function f: X — Y is said to be c-concaveif for C,D C Y
whenever CoyD, f~1(C)oy f~Y(D).

Theorem 2.13. Let f : X - Y be a bijective function on two preconvezity
spaces (X,0) and (Y,p). Then f is c-concave if and only if for A, B C X
whenever A< B, f(A) < f(B).
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Proof. (=) Let f(A)<f(B) for A,B C X; then f(A)u(Y — f(B)). Since f is
c-concave, we have Ao(X — B), and so A £4B.

(<) Let f~1(C) gf~1(D); then there exists an element z € f~1(C) such
that z 4f (D), and let f(z) = y. It follows < (X — f~1(D)), and so
y < (Y — D). By Lemma 2.1, we get C' 4D. O

Theorem 2.14. Let o1 and o2 be compatible preconverzities on the convez-
ity spaces (X, hy) and (Y, hy), respectively and let f : X — Y be a bijective
function. Then f is c-concave if and only if it is concave.

Proof. (=) Let y € ho(f(A)) for A C X; then yoyf(A). Since f is c-concave
and injective, it follows f~!(y)o14. Since o, is compatible with A1, we have
F71(y) € hi(A) and so y € f(hi(A)).

(<) Let f~1(C) ¢4 f~Y(D) for each €, D C Y; then there exists z € f~1(C)
such that = g1 f~!(D), and so = & hy(f~*(D)). Since f is concave and sur-
jective, flz) & ho(f(f (D)) = ha(D). Thus we get f(z) gD, and so
C #oD. 0

Corollary 2.15. Let f : X — Y be a bijective function on two preconvexity
spaces (X,0) and (Y,u). Then f is a convexeomorphism if and only if f is
c-convex and c-concave.

Proof. From Definition 1.6, we get the result. O

Theorem 2.16. Let f : X — Y be a function on two convezity spaces (X, hy)

and (Y, hg). Then f is concave if and only if f{hi(A)) = he(f(hi(A))) for
ACX.

Proof. (=) Let f be a concave function; then ho(f(h1(4))) D f(hi(4)) D
ha(f(h1(A))) for A C X. Hence we get f(h1(A)) = ha(f(hi(4))).
(<) It is obvious. O

Theorem 2.17. Let f : X — Y be a function on two convezity spaces (X, C1)
and (Y, Cs), then f is concave if and only if for each A € Cy, f(A) € Ca.

Proof. 1t is obvious from Theorem 2.16. O
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