• Title/Summary/Keyword: convergence properties

Search Result 1,938, Processing Time 0.029 seconds

DEFERRED STATISTICAL EQUIVALENCE FOR DOUBLE SEQUENCES OF SETS

  • Esra Gulle
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.555-571
    • /
    • 2023
  • The main purpose of this paper is to introduce the concept of asymptotical deferred statistical equivalence in the Wijsman sense for double set sequences. Also, we give some properties of this concept and prove some theorems associated with this concept. Furthermore, we examine the connection between the concepts of asymptotical deferred statistical and Cesàro equivalence in the Wijsman sense for double set sequences.

CONVERGENCE THEOREM FOR KURZWEIL-HENSTOCK-PETTIS INTEGRABLE FUZZY MAPPINGS

  • Park, Chun-Kee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.279-291
    • /
    • 2010
  • In this paper, we introduce the Kurzweil-Henstock-Pettis integral of fuzzy mappings in Banach spaces in terms of the Kurzweil-Henstock-Pettis integral of set-valued mappings and obtain some properties of the Kurzweil-Henstock-Pettis integral of fuzzy mappings in Banach spaces and the convergence theorem for Kurzweil-Henstock-Pettis integrable fuzzy mappings.

A NOTE ON ALMOST PERIODIC FUZZY MAPPINGS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.277-282
    • /
    • 2002
  • In this paper we shall discuss the relationship between almost periodic fuzzy mappings and the properties of convergence theorems, and some results of almost periodic fuzzy mappings.

Layer Controlled Synthesis of Graphene using Two-Step Growth Process

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.221.2-221.2
    • /
    • 2015
  • Graphene is very interesting 2 dimensional material providing unique properties. Especially, graphene has been investigated as a stretchable and transparent conductor due to its high mobility, high optical transmittance, and outstanding mechanical properties. On the contrary, high sheet resistance of extremely thin monolayer graphene limits its application. Artificially stacked multilayer graphene is used to decrease its sheet resistance and has shown improved results. However, stacked multilayer graphene requires repetitive and unnecessary transfer processes. Recently, growth of multilayer graphene has been investigated using a chemical vapor deposition (CVD) method but the layer controlled synthesis of multilayer graphene has shown challenges. In this paper, we demonstrate controlled growth of multilayer graphene using a two-step process with multi heating zone low pressure CVD. The produced graphene samples are characterized by optical microscope (OM) and scanning electron microscopy (SEM). Raman spectroscopy is used to distinguish a number of layers in the multilayer graphene. Its optical and electrical properties are also analyzed by UV-Vis spectrophotometer and probe station, respectively. Atomic resolution images of graphene layers are observed by high resolution transmission electron microscopy (HRTEM).

  • PDF

Mechanical Characteristics Analysis of Structural Light-weight Aluminum Foam (구조용 경량 알루미늄 발포금속의 기계적 특성 연구 분석)

  • Ma, Jeong Beom;Lee, Jeong Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Aluminum foam is one of the representative light-weight materials. In this study we analyzed the mechanical properties of the aluminum foam structures. Aluminum materials with pores have novel mechanical characteristics such as flame retardancy, damping, and energy absorption which are superior to those of polymer foam. Furthermore its reusable properties draw considerable interests. General properties, energy and acoustic absorption will be investigated and future research issues such as binding techniques of foam materials with other structures will be discussed through foam application examples.

Effect of InGaZnO Solution Concentration on the Electrical Properties of Drop-Cast Oxide Thin-Film Transistors (InGaZnO 용액의 농도가 Drop-casting으로 제작된 산화물 박막 트랜지스터의 전기적 특성에 미치는 영향)

  • Noh, Eun-Kyung;Yu, Kyeong Min;Kim, Min-Hoi
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.332-335
    • /
    • 2020
  • Drop casting, a solution process, is a simple low-cost fabrication technique that does not waste material. In this study, we elucidate the effect of the concentration of a InGaZnO solution on the electrical properties of drop-cast oxide thin-film transistors. The higher the concentration the larger the amount of remnant InGaZnO solutes, which yields a thicker thin film. Accordingly, the electrical properties were strongly dependent on the concentration. At a high concentration of 0.3 M (or higher), a large current flowed but did not lead to switching characteristics. At a concentration lower than 0.01 M, switching characteristics were observed, but the mobility was small. In addition to a high mobility, sufficient switching characteristics were obtained at a concentration of 0.1 M owing to the appropriate thickness of the semiconductor layer. This study provides a technical basis for the low-cost fabrication of switching devices capable of driving a sensor array.

Strength Estimation of Ready-Mixed Concrete Using Crushed Sand (부순모래를 사용한 레디믹스트 콘크리트의 배합설계 및 강도추정방법)

  • Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1999
  • It is difficult to keep the balance of supply and demand for natural aggregates in recent years, because natural resources have become to be almost exhausted. Crushed stone is already used for coarse aggregate instead of river gravel at present. Now, crushed sand or sea sand should be used for fine aggregate, because natural sand also has been exhausted with a few exceptions around Nakdong River. The sea sand has a lot of problems which are the corrosion of reinforcement bars, the investment of facility for cleansing salt and the cost increase due to the insufficiency of industrial water. Therefore, it is necessary to produce and to utilize the crushed sand very actively, but some material properties which are related to water absorption, strength and chemical durability, prevent from determining the generalized criteria because its rocks make much differences in its physical and chemical characteristics. In this paper, fundamental physical properties of crushed sand, which comes from Daegu Subway construction fields, have been investigated for the usability on basic material of concrete. The optimum replacement ratio and the strength estimation method of crushed sand replacing natural sand also have been presented here through the compressive strength test of ready-mixed concrete cylinders.

  • PDF

Temperature-dependent Luminescence Properties of Digital-alloy In(Ga1-zAlz)As

  • Cho, Il-Wook;Ryu, Mee-Yi;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.27 no.3
    • /
    • pp.56-60
    • /
    • 2018
  • The optical properties of the digital-alloy $(In_{0.53}Ga_{0.47}As)_{1-z}/(In_{0.52}Al_{0.48}As)_z$ grown by molecular beam epitaxy as a function of composition z (z = 0.4, 0.6, and 0.8) have been studied using temperature-dependent photoluminescence (PL) and time-resolved PL (TRPL) spectroscopy. As the composition z increases from 0.4 to 0.8, the PL peak energy of the digital-alloy $In(Ga_{1-z}Al_z)As$ is blueshifted, which is explained by the enhanced quantization energy due to the reduced well width. The decrease in the PL intensity and the broaden FWHM with increasing z are interpreted as being due to the increased Al contents in the digital-alloy $In(Ga_{1-z}Al_z)As$ because of the intermixing of Ga and Al in interface of InGaAs well and InAlAs barrier. The PL decay time at 10 K decreases with increasing z, which can be explained by the easier carrier escape from InGaAs wells due to the enhanced quantized energies because of the decreased InGaAs well width as z increases. The emission energy and luminescence properties of the digitalalloy $(InGaAs)_{1-z}/(InAlAs)_z$ can be controlled by adjusting composition z.