
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 23, No. 2, June 2010

CONVERGENCE THEOREM FOR
KURZWEIL–HENSTOCK–PETTIS

INTEGRABLE FUZZY MAPPINGS

Chun-Kee Park*

Abstract. In this paper, we introduce the Kurzweil-Henstock-Pettis inte-
gral of fuzzy mappings in Banach spaces in terms of the Kurzweil-Henstock-
Pettis integral of set-valued mappings and obtain some properties of the
Kurzweil-Henstock-Pettis integral of fuzzy mappings in Banach spaces and
the convergence theorem for Kurzweil-Henstock-Pettis integrable fuzzy map-
pings.

1. Introduction

Several types of integrals of set-valued mappings were studied by Au-

mann [1], Di Piazza and Musial [2, 3], El Amri and Hess [4], Papageoriou

[10] and others. In particular, Di Piazza and Musial [3] introduced the

Kurzweil-Henstock-Pettis integral of set-valued mappings whose values are

closed bounded convex subsets in Banach spaces and established some prop-

erties of the integral. Several mathematicians introduced the integrals of

fuzzy mappings in terms of the integrals of set-valued mappings. Kaleva [9]

introduced the integral of fuzzy mappings in Rn in terms of the integral of

set-valued mappings in Rn. Xue, Ha and Ma [11], Xue, Wang and Wu [12]

also introduced integrals of fuzzy mappings in Banach spaces in terms of

Aumann-Pettis and Aumann-Bochner integrals of set-valued mappings.

The purpose of this paper is to study the Kurzweil-Henstock-Pettis in-

tegral of fuzzy mappings in Banach spaces. We introduce the Kurzweil-

Henstock-Pettis integral of fuzzy mappings in Banach spaces in terms of the

Kurzweil-Henstock-Pettis integral of set-valued mappings and obtain some
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properties of the Kurzweil-Henstock-Pettis integral of fuzzy mappings in

Banach spaces and the convergence theorem for Kurzweil-Henstock-Pettis

integrable fuzzy mappings.

2. Prelininaries

Throughout this paper, L denotes the family of all Lebesgue measurable

subsets of [a, b] and X a real separable Banach space with dual X∗. CL(X)

denotes the family of all nonempty closed subsets of X and CWK(X) the

family of all nonempty convex weakly compact subsets of X. For A ⊆ X

and x∗ ∈ X∗, let s(x∗, A) = sup{x∗(x) : x ∈ A}, the support function of A.

For closed bounded subsets A,B of X, let H(A,B) denote the Hausdorff

metric of A and B defined by

H(A,B) = max
(

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
)

,

where d(a,B) = infb∈B ‖a− b‖ and d(b, A) = infa∈A ‖a− b‖. Especially,

H(A,B) = sup
‖x∗‖≤1

|s(x∗, A)− s(x∗, B)|

whenever A,B are convex sets. The number ‖A‖ is defined by

‖A‖ = H(A, {0}) = sup
x∈A

‖x‖.

Let u : X → [0, 1]. We denote [u]r = {x ∈ X : u(x) ≥ r} for r ∈ (0, 1]

and [u]0 = cl{x ∈ X : u(x) > 0}. u is called a generalized fuzzy number on

X if for each r ∈ (0, 1], [u]r ∈ CWK(X). Let F(X) denote the set of all

generalized fuzzy numbers on X. The addition and scalar multiplication in

F(X) are defined according to Zadeh’s extension principle. For u, v ∈ F(X)

and λ ∈ R, [u + v]r = [u]r + [v]r and [λu]r = λ[u]r for each r ∈ (0, 1]. Hence

u + v, λu ∈ F(X). For u, v ∈ F(X), we define u ≤ v as follows:

u ≤ v if u(x) ≤ v(x) for all x ∈ X.

For u, v ∈ F(X), u ≤ v if and only if [u]r ⊆ [v]r for each r ∈ (0, 1]. Define

D : F(X)×F(X) → [0,+∞] by the equation

D(u, v) = sup
r∈(0,1]

H([u]r, [v]r).
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Then D is a metric on F(X). The norm ‖u‖ of u ∈ F(X) is defined by

‖u‖ = D(u, 0̃) = sup
r∈(0,1]

H([u]r, {0}) = sup
r∈(0,1]

‖[u]r‖, where 0̃ = χ{0}.

A set-valued mapping F : [a, b] → CL(X) is said to be scalarly measurable

if for every x∗ ∈ X∗, the real-valued function s(x∗, F ) is measurable. A set-

valued mapping F : [a, b] → CL(X) is said to be measurable if F−1(A) =

{t ∈ [a, b] : F (t)∩A 6= ∅} ∈ L for every A ∈ CL(X). Note that if F : [a, b] →
CL(X) is measurable then F : [a, b] → CL(X) is scalarly measurable. On

the other hand, F : [a, b] → CWK(X) is measurable if and only if F :

[a, b] → CWK(X) is scalarly measurable [4].

Definition 2.1.([5,6]) A K-partition of [a, b] is a finite collection P =

{([ci, di], ti) : 1 ≤ i ≤ n} such that {[ci, di] : 1 ≤ i ≤ n} is a non-

overlapping family of subintervals of [a, b] covering [a, b] and ti ∈ [ci, di]

for i = 1, 2, · · · , n. A gauge on [a, b] is a function δ : [a, b] → (0,∞). A

K-partition P = {([ci, di], ti) : 1 ≤ i ≤ n} is δ-fine if [ci, di] ⊆ (ti− δ(ti), ti +

δ(ti)) for i = 1, 2, · · · , n. A function f : [a, b] → X is said to be Henstock

integrable on [a, b] if there exists w ∈ X with the following property: for

each ε > 0 there exists a gauge δ : [a, b] → (0,∞) such that
∥∥∥∥∥

n∑

i=1

f(ti)(di − ci)− w

∥∥∥∥∥ < ε

for each δ-fine K-partition P = {([ci, di], ti) : 1 ≤ i ≤ n} of [a, b]. We write

w = (H)
∫ b

a
f(t)dt. In case when X is the real line, the function f : [a, b] → R

is said to be Kurzweil-Henstock integrable or simply KH-integrable on [a, b]

and we write w = (KH)
∫ b

a
f(t)dt.

Note that if f : [a, b] → R is Lebesgue integrable on [a, b], then f : [a, b] →
R is KH-integrable on [a, b].

f : [a, b] → X is called a selection of F : [a, b] → CL(X) if f(t) ∈ F (t)

for every t ∈ [a, b]. A set-valued mapping F : [a, b] → CL(X) is said to

be scalarly Kurzweil-Henstock integrable or simply scalarly KH-integrable

on [a, b] if for each x∗ ∈ X∗, s(x∗, F ) is KH-integrable on [a, b]. A set-

valued mapping F : [a, b] → CL(X) is said to be weakly Kurzweil-Henstock
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integrably bounded or simply weakly KH-integrably bounded on [a, b] if the

real-valued function |x∗F | : [a, b] → R, |x∗F |(t) = sup{|x∗(x)| : x ∈ F (t)}, is

KH-integrable for each x∗ ∈ X∗. A set-valued mapping F : [a, b] → CL(X)

is said to be Kurzweil-Henstock integrably bounded or simply KH-integrably

bounded on [a, b] if there exists an KH-integrable real-valued function h such

that for each t ∈ [a, b], ‖x‖ ≤ h(t) for all x ∈ F (t).

Definition 2.2.([3]) A set-valued mapping F : [a, b] → CWK(X) is said

to be Kurzweil-Henstock-Pettis integrable or simply KHP-integrable on [a, b]

if F : [a, b] → CWK(X) is scalarly KH-integrable on [a, b] and for each

subinterval [c, d] of [a, b] there exists W[c,d] ∈ CWK(X) such that

(1.1) s(x∗, W[c,d]) = (KH)
∫ d

c

s(x∗, F (t))dt

for each x∗ ∈ X∗. We write W[c,d] = (KHP )
∫ d

c
F (t)dt.

Note that when a set-valued mapping is a function f : [a, b] → X, then

the set W[c,d] is reduced to a vector in X and the equality (1.1) turns into

x∗(W[c,d]) = (KH)
∫ d

c

x∗f(t)dt

and we say in that case that the function f is KHP-integrable on [a, b].

Theorem 2.3. ([8]) If u ∈ F(X), then

(1) [u]r ∈ CWK(X) for all r ∈ (0, 1],

(2) [u]r1 ⊇ [u]r2 for 0 < r1 ≤ r2 ≤ 1,

(3) if {rn} ⊆ (0, 1] is a nondecreasing sequence converging to r ∈ (0, 1],

then [u]r = ∩∞n=1[u]rn .

Conversely, if {Ar : r ∈ (0, 1]} ⊆ CL(X) satisfies (1)-(3) above, then there

exists u ∈ F(X) such that [u]r = Ar for each r ∈ (0, 1].

Theorem 2.4. ([11]) Let {rn} ⊆ (0, 1] be a nondecreasing sequence con-

verging to r ∈ (0, 1], Arn , Ar ∈ CWK(X) and Arn ⊇ Arn+1 ⊇ Ar (n ∈ N).

Then {s(x∗, Arn)} converges to s(x∗, Ar) if and only if Ar = ∩∞n=1Arn
.
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Theorem 2.5. ([3]) Let F : [a, b] → CWK(X) be a scalarly KH-

integrable set-valued mapping. Then F : [a, b] → CWK(X) is KHP-

integrable on [a, b] if and only if each measurable selection of F : [a, b] →
CWK(X) is KHP-integrable on [a, b].

3. Results

A mapping F̃ : [a, b] → F(X) is called a fuzzy mapping in a Banach

space X. In this case F̃ r : [a, b] → CWK(X) defined by F̃ r(t) = [F̃ (t)]r

is a set-valued mapping for each r ∈ (0, 1]. A fuzzy mapping F̃ : [a, b] →
F(X) is said to be measurable (resp., scalarly measurable) if F̃ r : [a, b] →
CWK(X) is measurable (resp., scalarly measurable) for each r ∈ (0, 1].

A fuzzy mapping F̃ : [a, b] → F(X) is said to be scalarly KH-integrable on

[a, b] if F̃ r : [a, b] → CWK(X) is scalarly KH-integrable on [a, b] for each r ∈
(0, 1]. A fuzzy mapping F̃ : [a, b] → F(X) is said to be weakly KH-integrably

bounded on [a, b] if F̃ r : [a, b] → CWK(X) is weakly KH-integrably bounded

on [a, b] for each r ∈ (0, 1]. A fuzzy mapping F̃ : [a, b] → F(X) is said to be

KH-integrably bounded on [a, b] if there exists an KH-integrable real-valued

function h on [a, b] such that for each t ∈ [a, b], ‖x‖ ≤ h(t) for all x ∈ F̃ 0(t),

where F̃ 0(t) = cl(∪0<r≤1F̃
r(t)).

Definition 3.1. A fuzzy mapping F̃ : [a, b] → F(X) is said to be

Kurzweil-Henstock-Pettis integrable or simply KHP-integrable on [a, b] if for

each subinterval [c, d] of [a, b] there exists u[c,d] ∈ F(X) such that [u[c,d]]r=

(KHP )
∫ d

c
F̃ r(t)dt for each r ∈ (0, 1]. In this case, u[c,d] = (KHP )

∫ d

c
F̃ (t)dt

is called the Kurzweil-Henstock-Pettis integral of F̃ over [c, d].

Theorem 3.2. Let F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) be KHP-

integrable on [a, b] and λ ≥ 0. Then

(1) F̃ + G̃ is KHP-integrable on [a, b] and for each subinterval [c, d] of

[a, b]

(KHP )
∫ d

c

{
F̃ (t) + G̃(t)

}
dt

= (KHP )
∫ d

c

F̃ (t)dt + (KHP )
∫ d

c

G̃(t)dt,
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(2) λF̃ is KHP-integrable on [a, b] and for each subinterval [c, d] of [a, b]

(KHP )
∫ d

c

λF̃ (t)dt = λ(KHP )
∫ d

c

F̃ (t)dt.

Proof. The proof is straightforward. ¤

Lemma 3.3. Let f : [a, b] → X be a KHP-integrable function and F :

[a, b] → CWK(X) and G : [a, b] → CWK(X) KHP-integrable set-valued

mappings. Then

(1) if f(t) ∈ F (t) a.e. on [a, b], then for each subinterval [c, d] of [a, b]

(KHP )
∫ d

c

f(t)dt ∈ (KHP )
∫ d

c

F (t)dt;

(2) if F (t) ⊆ G(t) a.e. on [a, b], then for each subinterval [c, d] of [a, b]

(KHP )
∫ d

c

F (t)dt ⊆ (KHP )
∫ d

c

G(t)dt;

(3) if F (t) = G(t) a.e. on [a, b], then for each subinterval [c, d] of [a, b]

(KHP )
∫ d

c

F (t)dt = (KHP )
∫ d

c

G(t)dt.

Proof. (1) Since f : [a, b] → X is KHP-integrable on [a, b], for each subin-

terval [c, d] of [a, b] and x∗ ∈ X∗, x∗f is KH-integrable on [c, d] and

(KH)
∫ d

c

x∗f(t)dt = x∗
(

(KHP )
∫ d

c

f(t)dt

)
.

If f(t) ∈ F (t) a.e. on [a, b], then for each subinterval [c, d] of [a, b] and

x∗ ∈ X∗

x∗
(

(KHP )
∫ d

c

f(t)dt

)
= (KH)

∫ d

c

x∗f(t)dt

≤ (KH)
∫ d

c

s(x∗, F (t))dt

= s

(
x∗, (KHP )

∫ d

c

F (t)dt

)
.
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Since (KHP )
∫ d

c
F (t)dt ∈ CWK(X), by the separation theorem

(KHP )
∫ d

c

f(t)dt ∈ (KHP )
∫ d

c

F (t)dt.

(2) If F (t) ⊆ G(t) a.e. on [a, b], then for each subinterval [c, d] of [a, b]

and x∗ ∈ X∗

(KH)
∫ d

c

s(x∗, F (t))dt ≤ (KH)
∫ d

c

s(x∗, G(t))dt,

s

(
x∗, (KHP )

∫ d

c

F (t)dt

)
≤ s

(
x∗, (KHP )

∫ d

c

G(t)dt

)
.

Since (KHP )
∫ d

c
F (t)dt, (KHP )

∫ d

c
G(t)dt ∈ CWK(X), by the separation

theorem

(KHP )
∫ d

c

F (t)dt ⊆ (KHP )
∫ d

c

G(t)dt.

(3) The proof is similar to (2). ¤

Theorem 3.4. Let F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) be KHP-

integrable fuzzy mappings. Then

(1) if F̃ (t) ≤ G̃(t) a.e. on [a, b], then for each subinterval [c, d] of [a, b]

(KHP )
∫ d

c

F̃ (t)dt ≤ (KHP )
∫ d

c

G̃(t)dt;

(2) if F̃ (t) = G̃(t) a.e. on [a, b], then for each subinterval [c, d] of [a, b]

(KHP )
∫ d

c

F̃ (t)dt = (KHP )
∫ d

c

G̃(t)dt.

Proof. (1) Since F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are KHP-

integrable on [a, b], for each subinterval [c, d] of [a, b] there exist u[c,d], v[c,d] ∈
F(X) such that [u[c,d]]r = (KHP )

∫ d

c
F̃ r(t)dt, [v[c,d]]r = (KHP )

∫ d

c
G̃r(t)dt

for each r ∈ (0, 1]. If F̃ (t) ≤ G̃(t) a.e. on [a, b], then by Lemma 3.3 [u[c,d]]r =
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(KHP )
∫ d

c
F̃ r(t)dt ⊆ (KHP )

∫ d

c
G̃r(t) dt = [v[c,d]]r for each r ∈ (0, 1] and

each subinterval [c, d] of [a, b]. Thus (KHP )
∫ d

c
F̃ (t)dt = u[c,d] ≤ v[c,d] =

(KHP )
∫ d

c
G̃(t)dt for each subinterval [c, d] of [a, b].

(2) The proof is similar to (1). ¤

Lemma 3.5. If F : [a, b] → CWK(X) and G : [a, b] → CWK(X) are

KH-integrably bounded and KHP-integrable on [a, b], then H(F, G) is KH-

integrable on [a, b] and

H

(
(KHP )

∫ b

a

F (t)dt, (KHP )
∫ b

a

G(t)dt

)

≤ (KH)
∫ b

a

H(F (t), G(t))dt.

Proof. Since F : [a, b] → CWK(X) and G : [a, b] → CWK(X) are

measurable, there exist Castaing representations {fn} and {gn} for F and

G. Since fn and gn are measurable for all n ∈ N,

H(F (t), G(t))

= max
(

sup
n≥1

inf
k≥1

‖fn(t)− gk(t)‖, sup
n≥1

inf
k≥1

‖gn(t)− fk(t)‖
)

is measurable. Since F : [a, b] → CWK(X) and G : [a, b] → CWK (X)

are KH-integrably bounded on [a, b], there exist KH-integrable real-valued

functions h1 and h2 on [a, b] such that for each t ∈ [a, b], ‖x‖ ≤ h1(t) for all

x ∈ F (t) and ‖x‖ ≤ h2(t) for all x ∈ G(t). Since h1 and h2 are nonnegative

and KH-integrable on [a, b], h1 and h2 are Lebesgue integrable on [a, b]. We

have

H(F (t), G(t)) ≤ H(F (t), {0}) + H(G(t), {0}) ≤ h1(t) + h2(t)

for each t ∈ [a, b]. Therefore H(F,G) is Lebesgue integrable on [a, b] and so

H(F, G) is KH-integrable on [a, b] and we have

H

(
(KHP )

∫ b

a

F (t)dt, (KHP )
∫ b

a

G(t)dt

)

= sup
‖x∗‖≤1

∣∣∣∣∣s
(

x∗, (KHP )
∫ b

a

F (t)dt

)
− s

(
x∗, (KHP )

∫ b

a

G(t)dt

)∣∣∣∣∣
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= sup
‖x∗‖≤1

∣∣∣∣∣(KH)
∫ b

a

s(x∗, F (t))dt− (KH)
∫ b

a

s(x∗, G(t))dt

∣∣∣∣∣

≤ sup
‖x∗‖≤1

(KH)
∫ b

a

|s(x∗, F (t))− s(x∗, G(t))|dt

≤ (KH)
∫ b

a

sup
‖x∗‖≤1

|s(x∗, F (t))− s(x∗, G(t))|dt

= (KH)
∫ b

a

H(F (t), G(t))dt

¤

Theorem 3.6. If F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are KH-

integrably bounded and KHP-integrable on [a, b], then D(F̃ , G̃) is KH-

integrable on [a, b] and

D

(
(KHP )

∫ b

a

F̃ (t)dt, (KHP )
∫ b

a

G̃(t)dt

)

≤ (KH)
∫ b

a

D(F̃ (t), G̃(t))dt.

Proof. Since F̃ : [a, b] → F(X) and G̃ : [a, b] → F(X) are measurable,

there exist Castaing representations {fr
n} and {gr

n} for F̃ r and G̃r for each

r ∈ (0, 1]. Since fr
n and gr

n are measurable for all n ∈ N,

H(F̃ r(t), G̃r(t))

= max
(

sup
n≥1

inf
k≥1

‖fr
n(t)− gr

k(t)‖, sup
n≥1

inf
k≥1

‖gr
n(t)− fr

k (t)‖
)

is measurable for each r ∈ (0, 1]. Hence D(F̃ (t), G̃(t)) = sup
k≥1

H(F̃ rk(t)

, G̃rk(t)) is measurable, where {rk : k ∈ N} is dense in (0, 1]. Since F̃ :

[a, b] → F(X) and G̃ : [a, b] → F(X) are KH-integrably bounded on [a, b],

there exist KH-integrable real-valued functions h1 and h2 on [a, b] such that

for each t ∈ [a, b], ‖x‖ ≤ h1(t) for all x ∈ F̃ 0(t) and ‖x‖ ≤ h2(t) for all

x ∈ G̃0(t). Since h1 and h2 are nonnegative and KH-integrable on [a, b], h1

and h2 are Lebesgue integrable on [a, b]. We have

D(F̃ (t), G̃(t)) ≤ D(F̃ (t), 0̃) + D(G̃(t), 0̃) ≤ h1(t) + h2(t)
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for each t ∈ [a, b]. Therefore D(F̃ , G̃) is Lebesgue integrable and so KH-

integrable on [a, b]. By Lemma 3.5 we have

H

(
(KHP )

∫ b

a

F̃ r(t)dt, (KHP )
∫ b

a

G̃r(t)dt

)

≤ (KH)
∫ b

a

H(F̃ r(t), G̃r(t))dt

for each r ∈ (0, 1]. Hence we have

D

(
(KHP )

∫ b

a

F̃ (t)dt, (KHP )
∫ b

a

G̃(t)dt

)

= sup
r∈(0,1]

H

([
(KHP )

∫ b

a

F̃ (t)dt

]r

,

[
(KHP )

∫ b

a

G̃(t)dt

]r)

= sup
r∈(0,1]

H

(
(KHP )

∫ b

a

F̃ r(t)dt, (KHP )
∫ b

a

G̃r(t)dt

)

≤ sup
r∈(0,1]

(KH)
∫ b

a

H(F̃ r(t), G̃r(t))dt

≤ (KH)
∫ b

a

sup
r∈(0,1]

H(F̃ r(t), G̃r(t))dt

= (KH)
∫ b

a

D(F̃ (t), G̃(t))dt.

¤

Theorem 3.7. Let F̃ : [a, b] → F(X) be measurable, weakly KH-

integrably bounded and scalarly KH-integrable on [a, b]. If each measurable

selection of F̃ r : [a, b] → CWK(X) is KHP-integrable on [a, b] for each

r ∈ (0, 1], then F̃ : [a, b] → F(X) is KHP-integrable on [a, b].

Proof. Let [c, d] be a subinterval of [a, b]. Since F̃ r : [a, b] → CWK(X) is

scalarly KH-integrable on [a, b] and each measurable selection of F̃ r : [a, b] →
CWK(X) is KHP-integrable on [a, b] for each r ∈ (0, 1], by Theorem 2.5

F̃ r : [a, b] → CWK(X) is KHP-integrable on [a, b] for each r ∈ (0, 1]. Hence

Ar = (KHP )
∫ d

c
F̃ r(t)dt ∈ CWK(X) for each r ∈ (0, 1]. For r1, r2 ∈ (0, 1]
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with r1 ≤ r2, F̃ r1(t) ⊇ F̃ r2(t) for each t ∈ [a, b]. By Lemma 3.3 Ar1 =

(KHP )
∫ d

c
F̃ r1(t)dt ⊇ (KHP )

∫ d

c
F̃ r2(t)dt = Ar2 . Let r ∈ (0, 1] and {rn}

be a sequence in (0, 1] such that r1 ≤ r2 ≤ r3 ≤ · · · and lim
n→∞

rn = r. Then

F̃ r(t) = ∩∞n=1F̃
rn(t) for each t ∈ [a, b]. By Theorem 2.4 lim

n→∞
s(x∗, F̃ rn(t)) =

s(x∗, F̃ r(t)) for each t ∈ [a, b] and x∗ ∈ X∗. For each n ∈ N, |s(x∗, F̃ rn(t))| ≤
|x∗F̃ r1 |(t) for each t ∈ [a, b] and x∗ ∈ X∗. Since F̃ : [a, b] → F(X) is

scalarly KH-integrable and weakly KH-integrably bounded on [a, b], by the

Dominated Convergence Theorem for the Kurzweil-Henstock integral we

have

lim
n→∞

s(x∗, Arn
) = lim

n→∞
(KH)

∫ d

c

s(x∗, F̃ rn(t))dt

= (KH)
∫ d

c

s(x∗, F̃ r(t))dt

= s(x∗, Ar)

for each x∗ ∈ X∗. By Theorem 2.4 Ar = ∩∞n=1Arn . By Theorem 2.3 there

exists u[c,d] ∈ F(X) such that [u[c,d]]r = Ar = (KHP )
∫ d

c
F̃ r(t) dt for each

r ∈ (0, 1]. Hence F̃ : [a, b] → F(X) is KHP-integrable on [a, b]. ¤

The following theorem is the Dominated Convergence Theorem for KHP-

integrable fuzzy mappings.

Theorem 3.8. Let F̃n : [a, b] → F(X) be KHP-integrable on [a, b] for

each n ∈ N, F̃ : [a, b] → F(X) measurable and scalarly KH-integrable on

[a, b] and lim
n→∞

D(F̃n(t), F̃ (t)) = 0 on [a, b]. If there exists an KH-integrable

real-valued function h such that ‖F̃ 0
n(t)‖ ≤ h(t) on [a, b] for each n ∈ N and

each measurable selection of F̃ r : [a, b] → CWK(X) is KHP-integrable on

[a, b] for each r ∈ (0, 1], then F̃ : [a, b] → F(X) is KHP-integrable on [a, b]

and

lim
n→∞

D

(
(KHP )

∫ b

a

F̃n(t)dt, (KHP )
∫ b

a

F̃ (t)dt

)
= 0.

Proof. Since lim
n→∞

D(F̃n(t), F̃ (t)) = 0 on [a, b], for each ε > 0 and t ∈ [a, b]

there exists N ∈ N such that n ≥ N ⇒ D(F̃n(t), F̃ (t)) < ε. For some n ∈ N
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with n ≥ N ,

‖F̃ 0(t)‖ = D(F̃ (t), 0̃) ≤ D(F̃ (t), F̃n(t)) + D(F̃n(t), 0̃)

< ‖F̃ 0
n(t)‖+ ε ≤ h(t) + ε

for each t ∈ [a, b]. Since ε > 0 is arbitrary, ‖F̃ 0(t)‖ ≤ h(t) on [a, b]. Thus

F̃ : [a, b] → F(X) is KH-integrably bounded and so weakly KH-integrably

bounded on [a, b]. By Theorem 3.7, F̃ : [a, b] → F(X) is KHP-integrable on

[a, b]. Since F̃n : [a, b] → F(X) is also KH-integrably bounded on [a, b] for

each n ∈ N, by Theorem 3.6 and the Dominated Convergence Theorem for

the Kurzweil-Henstock integral we have

D

(
(KHP )

∫ b

a

F̃n(t)dt, (KHP )
∫ b

a

F̃ (t)dt

)

≤ (KH)
∫ b

a

D(F̃n(t), F̃ (t))dt → 0

as n →∞. Thus lim
n→∞

D
(
(KHP )

∫ b

a
F̃n(t)dt, (KHP )

∫ b

a
F̃ (t)dt

)
= 0. ¤
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