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CONVERGENCE THEOREM FOR
KURZWEIL-HENSTOCK-PETTIS
INTEGRABLE FUZZY MAPPINGS

CHUN-KEE PARK*

ABSTRACT. In this paper, we introduce the Kurzweil-Henstock-Pettis inte-
gral of fuzzy mappings in Banach spaces in terms of the Kurzweil-Henstock-
Pettis integral of set-valued mappings and obtain some properties of the
Kurzweil-Henstock-Pettis integral of fuzzy mappings in Banach spaces and
the convergence theorem for Kurzweil-Henstock-Pettis integrable fuzzy map-

pings.

1. Introduction

Several types of integrals of set-valued mappings were studied by Au-
mann [1], Di Piazza and Musial [2, 3], El Amri and Hess [4], Papageoriou
[10] and others. In particular, Di Piazza and Musial [3] introduced the
Kurzweil-Henstock-Pettis integral of set-valued mappings whose values are
closed bounded convex subsets in Banach spaces and established some prop-
erties of the integral. Several mathematicians introduced the integrals of
fuzzy mappings in terms of the integrals of set-valued mappings. Kaleva [9]
introduced the integral of fuzzy mappings in R™ in terms of the integral of
set-valued mappings in R"™. Xue, Ha and Ma [11], Xue, Wang and Wu [12]
also introduced integrals of fuzzy mappings in Banach spaces in terms of
Aumann-Pettis and Aumann-Bochner integrals of set-valued mappings.

The purpose of this paper is to study the Kurzweil-Henstock-Pettis in-
tegral of fuzzy mappings in Banach spaces. We introduce the Kurzweil-
Henstock-Pettis integral of fuzzy mappings in Banach spaces in terms of the
Kurzweil-Henstock-Pettis integral of set-valued mappings and obtain some
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properties of the Kurzweil-Henstock-Pettis integral of fuzzy mappings in
Banach spaces and the convergence theorem for Kurzweil-Henstock-Pettis

integrable fuzzy mappings.

2. Prelininaries

Throughout this paper, £ denotes the family of all Lebesgue measurable
subsets of [a, b] and X a real separable Banach space with dual X*. CL(X)
denotes the family of all nonempty closed subsets of X and CW K (X) the
family of all nonempty convex weakly compact subsets of X. For A C X
and z* € X*, let s(z*, A) = sup{z*(z) : x € A}, the support function of A.
For closed bounded subsets A, B of X, let H(A, B) denote the Hausdorff
metric of A and B defined by

H(A, B) = max <sup d(a, B),sup d(b, A)> ,
a€A beB
where d(a, B) = infyep ||a — b|| and d(b, A) = inf,c 4 ||a — b||. Especially,
H(A,B) = ” SlTlgl |s(x*, A) — s(z™, B)|

whenever A, B are convex sets. The number ||A|| is defined by
[All = H(A,{0}) = sup [|l].
z€A

Let u: X — [0,1]. We denote [u]" = {x € X : u(x) > r} for r € (0,1]
and [u]® = cl{x € X : u(x) > 0}. u is called a generalized fuzzy number on
X if for each r € (0,1], [u]" € CWK(X). Let F(X) denote the set of all
generalized fuzzy numbers on X. The addition and scalar multiplication in
F(X) are defined according to Zadeh’s extension principle. For u,v € F(X)
and A € R, [u+v]" = [u]"+ [v]" and [Au]" = Au]" for each r € (0,1]. Hence
u~+ v, u € F(X). For u,v € F(X), we define u < v as follows:

u<wv if u(z) <wv(z) forall z € X.

For u,v € F(X), u < wv if and only if [u]" C [v]" for each r € (0,1]. Define
D: F(X)x F(X) — [0,400] by the equation

D(u,v) = Tgﬁ)p” H{([u]", [v]").
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Then D is a metric on F(X). The norm |ju|| of u € F(X) is defined by
lull = D(u,0) = sup H([u]",{0}) = sup ||[u]"]|, where 0= x{o}.
re(0,1] re(0,1]
A set-valued mapping F : [a,b] — CL(X) is said to be scalarly measurable
if for every z* € X*, the real-valued function s(z*, F') is measurable. A set-
valued mapping F' : [a,b] — CL(X) is said to be measurable if F~1(A) =
{t € |a,b] : F(t)NA # 0} € L for every A € CL(X). Note that if F' : [a,b] —
CL(X) is measurable then F' : [a,b] — CL(X) is scalarly measurable. On
the other hand, F' : [a,b] — CWK(X) is measurable if and only if F :
[a,b] — CW K (X) is scalarly measurable [4].

DEFINITION 2.1.([5,6]) A K-partition of [a,b] is a finite collection P =
{([essd;],ti) = 1 < i < n} such that {[c;,d;] : 1 < i < n} is a non-
overlapping family of subintervals of [a,b] covering [a,b] and t; € [c;,d;]
for i = 1,2,---,n. A gauge on [a,b] is a function § : [a,b] — (0,00). A
K-partition P = {([c;, d;],t;) : 1 <1i < n} is o-fine if [¢;,d;] C (t; —(ti), ti +
d(t;)) for i = 1,2,--- ,n. A function f : [a,b] — X is said to be Henstock
integrable on [a,b] if there exists w € X with the following property: for
each € > 0 there exists a gauge 9 : [a,b] — (0, 00) such that

<€

Z fti)(di —ci) —w

for each 0-fine K-partition P = {([¢;,d;],t;) : 1 < i < n} of [a,b]. We write
w=(H) f; f(t)dt. In case when X is the real line, the function f : [a,b] — R
is said to be Kurzweil-Henstock integrable or simply KH-integrable on |a, b]
and we write w = (KH) ff f(t)dt.

Note that if f : [a,b] — R is Lebesgue integrable on [a, b], then f : [a,b] —
R is KH-integrable on [a, b].

f:]a,b] — X is called a selection of F : [a,b] — CL(X) if f(t) € F(t)
for every t € [a,b]. A set-valued mapping F : [a,b] — CL(X) is said to
be scalarly Kurzweil-Henstock integrable or simply scalarly KH-integrable
on [a,b] if for each z* € X*, s(z*, F) is KH-integrable on [a,b]. A set-
valued mapping F': [a,b] — CL(X) is said to be weakly Kurzweil-Henstock
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integrably bounded or simply weakly KH-integrably bounded on [a,b] if the
real-valued function |x*F| : [a,b] — R, [*F|(t) = sup{|z*(z)| : x € F(t)}, is
KH-integrable for each z* € X*. A set-valued mapping F : [a,b] — CL(X)
is said to be Kurzweil-Henstock integrably bounded or simply KH-integrably
bounded on [a, b] if there exists an KH-integrable real-valued function h such
that for each t € [a,b], ||z|| < h(t) for all x € F(t).

DEFINITION 2.2.([3]) A set-valued mapping F' : [a,b] — CW K (X) is said
to be Kurzweil-Henstock-Pettis integrable or simply KHP-integrable on [a, b]
if F: [a,b] — CWK(X) is scalarly KH-integrable on [a,b] and for each
subinterval [c, d] of [a, b] there exists Wi, 4 € CW K (X) such that

d
(1.1) S(@* Wiea) = (KH)/ s(@*, F(t))dt

for each z* € X*. We write Wi, g = (KHP) fcd F(t)dt.
Note that when a set-valued mapping is a function f : [a,b] — X, then

the set W, 4 is reduced to a vector in X and the equality (1.1) turns into

d
2 (Wiea) = (KH) / o f(t)dt

and we say in that case that the function f is KHP-integrable on [a,b].

THEOREM 2.3. ([8]) If u € F(X), then
(1) [u]" e CWK(X) for all € (0,1],
(2) [u]™ D u]™ for 0 <r <719 <1,
(3) if {rn} C (0,1] is a nondecreasing sequence converging to r € (0, 1],
then [u]" = NS [u]™.
Conversely, if { A, : r € (0,1]} C CL(X) satisfies (1)-(3) above, then there
exists u € F(X) such that [u]" = A, for each r € (0,1].

THEOREM 2.4. ([11]) Let {r,,} C (0, 1] be a nondecreasing sequence con-
verging tor € (0,1], A, A, € CWK(X) and A,, 2 A,,,, 2 A, (n € N).
Then {s(z*, A, )} converges to s(z*, A,) if and only if A, = N2, A, .
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THEOREM 2.5. ([3]) Let F' : [a,b)] — CWK(X) be a scalarly KH-
integrable set-valued mapping. Then F : [a,b] — CWK(X) is KHP-
integrable on [a,b] if and only if each measurable selection of F' : [a,b] —
CW K(X) is KHP-integrable on [a, b].

3. Results

A mapping F : [a,b] — F(X) is called a fuzzy mapping in a Banach
space X. In this case F7" : [a,b] — CWK(X) defined by F"(t) = [F(t)]"
is a set-valued mapping for each r € (0,1]. A fuzzy mapping F: [a,b] —
F(X) is said to be measurable (vesp., scalarly measurable) if F" : [a,b] —
CWK(X) is measurable (resp., scalarly measurable) for each r € (0,1].
A fuzzy mapping F : [a,b] — F(X) is said to be scalarly KH-integrable on
[a,b] if F" : [a,b] — CW K (X) is scalarly KH-integrable on [a, b] for each 7 €
(0,1]. A fuzzy mapping F : [a,b] — F(X) is said to be weakly KH-integrably
bounded on [a,b] if F" : [a,b] — CW K (X) is weakly KH-integrably bounded
on [a, b] for each r € (0,1]. A fuzzy mapping F: [a,b] — F(X) is said to be
KH-integrably bounded on [a, b] if there exists an KH-integrable real-valued
function h on [a, b] such that for each t € [a,b], ||lz|| < h(t) for all = € FO(t),
where FO(t) = cl(Up<r<1 F" (1))

DEFINITION 3.1. A fuzzy mapping F : [a,b] — F(X) is said to be
Kurzweil-Henstock- Pettis integrable or simply KHP-integrable on [a, b] if for
each subinterval [c, d] of [a, b] there exists u. g € F(X) such that [u. 4] =

(KHP) f E7(t)dt for each r € (0, 1]. In this case, uj. 4 = (KHP) fcd F(t)dt
is called the Kurzweil-Henstock-Pettis integral of F over [c, d).

THEOREM 3.2. Let F : [a,b] — F(X) and G : [a,b] — F(X) be KHP-
integrable on [a,b] and A > 0. Then
(1) F + G is KHP-integrable on [a,b] and for each subinterval [c,d] of

[a, b]
(KHP) / { }dt

d
KHP/ t)dt + (KHP) / G(t
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(2) AF is KHP-integrable on [a,b] and for each subinterval [c, d] of [a, D]
d d
(KHP) / AF(t)dt = \(KHP) / F(t)dt.

Proof. The proof is straightforward. U

LeEMMA 3.3. Let f : [a,b] — X be a KHP-integrable function and F :
[a,b] = CWK(X) and G : [a,b] — CWK(X) KHP-integrable set-valued
mappings. Then

(1) if f(t) € F(t) a.e. on [a,b], then for each subinterval [c,d] of [a, ]

d d
(KHP)/ ft)dt € (KHP)/ F(t)dt;
(2) if F(t) C G(t) a.e. on [a,b], then for each subinterval [c, d] of |a, b]

(KHP) / ’ F(t)dt € (KHP) / ’ G(t)dt;

(3) if F(t) = G(t) a.e. on [a,b], then for each subinterval [c, d] of |a, b]

(KHP) / " Pyt = (HP) / e

Proof. (1) Since f : [a,b] — X is KHP-integrable on [a, b], for each subin-
terval [c,d] of [a,b] and z* € X*, z* f is KH-integrable on [c, d] and

d d
(KH) / o f(t)dt = z* <(KHP) / f(t)dt).

If f(t) € F(t) a.e. on [a,b], then for each subinterval [c,d] of [a,b] and
z*e X*

d d
o ((KHP) / f(t)dt) = (KH) / o* f(t)dt

< (KH) / C s Pt

—s (x (KHP) /dF(t)dt> .
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Since (K HP) fcd F(t)dt e CWK(X), by the separation theorem

(KHP) / " byt € (KHP) / " Py
(2) If F(t) € G(t) a.e. on [a,b], then for each subinterval [c,d] of [a,d]

and z* € X*

d d
(KH) / s(@*, F(8))dt < (KH) / s, G(t))dt,

s (m*,(KHP) / dF(t)dt) <s <x*,(KHP) / dG(t)dt).

Since (KHP) [* F(t)dt, (KHP) [*G(t)dt € CWK(X), by the separation

theorem

(KHP) / " Pyt € (KHP) / e
(3) The proof is similar to (2). O

THEOREM 3.4. Let F : [a,b] — F(X) and G : [a,b] — F(X) be KHP-
integrable fuzzy mappings. Then

(1) if F(t) < G(t) a.e. on [a,b], then for each subinterval [c,d] of [a, b]

(KHP) / dﬁ(t)dtg (KHP) / ’ G(t)dt;

(2) if F(t) = G(t) a.e. on [a,b], then for each subinterval [c,d] of [a, b]
(KHP) / ’ F(t)dt = (KHP) / ’ G(t)dt.

Proof. (1) Since F : [a,b] — F(X) and G : [a,b] — F(X) are KHP-
integrable on [a, b], for each subinterval [c, d] of [a, b] there exist u(. q), Vc,q) €
F(X) such that [ug. )" = (KHP) [ Fr(t)dt, [veq]” = (KHP) [* Gr(t)dt
for each r € (0,1]. If F(t) < G(t) a.e. on [a, b], then by Lemma 3.3 [ufe,aq]” =
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(KHP) [TFr(t)dt C (KHP) [T G (t) dt = [vjeq]" for each r € (0,1] and
each subinterval [c,d] of [a,b]. Thus (KHP) fcd F(t)dt = Ule,d) < Vie,d] =
(KHP) fcd G(t)dt for each subinterval [c, d] of [a, D).

(2) The proof is similar to (1). O

LEMMA 3.5. If F : [a,b] - CWK(X) and G : [a,b] — CWK(X) are
KH-integrably bounded and KHP-integrable on [a,b], then H(F, G) is KH-

integrable on [a,b] and
H ((KHP) /b F(t)dt,(KHP) /b G(t)dt)
b
< (KH) / H(F(t), G(t))dt.

Proof. Since F : [a,b] — CWK(X) and G : [a,b] — CWK(X) are
measurable, there exist Castaing representations {f,} and {g,} for F' and

G. Since f, and g, are measurable for all n € N,

H(F(t), G(t))

= s (sup uf 1£,(6) = 105w fut [9n(0) ~ (0]
is measurable. Since F : [a,b] — CWK(X) and G : [a,b] — CWK (X)
are KH-integrably bounded on [a, b], there exist KH-integrable real-valued
functions hy and hs on [a, b] such that for each t € [a,b], ||z] < hi(t) for all
x € F(t) and ||z|| < ho(t) for all x € G(t). Since hy and hy are nonnegative
and KH-integrable on [a, b], h1 and hy are Lebesgue integrable on [a, b]. We

have

H(F(t),G(t) < H(F(1),{0}) + H(G(1),{0}) < ha(t) + ha(t)
for each t € [a,b]. Therefore H(F,G) is Lebesgue integrable on [a, b] and so
H(F,G) is KH-integrable on [a, b] and we have

H ((KHP) / bF(t)dt, (KHP) / bG(t)dt)

s <:z*,(KHP) / bF(t)dt> s (m*,(KHP) / bG(t)dt)‘

= sup
fle= (<1
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= sup
llz=ll<1

b b
(KH) / s(z*, F(t))dt — (KH) / s(z*, G(t))dt

b
< sup (KH) [ |s(@", F(t)) - s(a", G(t))]dt

lle|I<1 )

(KH)/ sup |s(z*, F(t)) — s(z*, G(t))|dt
a |lz*||<1

(KH) / H(F(t),G(t))dt

O

THEOREM 3.6. If F : [a,b] — F(X) and G : [a,b] — F(X) are KH-
integrably bounded and KHP-integrable on [a,b], then D(F,G) is KH-
integrable on [a,b] and

D ((KHP) / bF(t)dt, (KHP) / bé(t)dt)

b a
< (KH)/ D(F(t),G(t))dt.

Proof. Since F : [a,b] — F(X) and G : [a,b] — F(X) are measurable,
there exist Castaing representations {f7} and {¢”} for F” and G" for each

€ (0,1]. Since f; and g; are measurable for all n € N,
H(E"(t), G (1)
= mas (sup uf 173(6) 650wt 910) = £70)] )

is measurable for each r € (0,1]. Hence D(ﬁ'(t),é(t)) = sup H(F“« (t)
k>1

,G"*(t)) is measurable, where {ry : k € N} is dense in (0,1]. Since F :
[a,b] — F(X) and G : [a,b] — F(X) are KH-integrably bounded on [a, b],
there exist KH-integrable real-valued functions hy and hy on [a, b] such that
for each t € [a,b], ||lz|| < hi(t) for all z € FO(t) and ||z| < ho(t) for all
T € éo(t). Since hy and ho are nonnegative and KH-integrable on [a, ], h;

and ho are Lebesgue integrable on [a,b]. We have

D(F(t),G(t)) < D(F(t),0) + D(G(1),0) < hu(t) + ha(t)
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for each t € [a,b]. Therefore D(F,G) is Lebesgue integrable and so KH-

integrable on [a,b]. By Lemma 3.5 we have

H ((KHP) / b E"(t)dt, (K HP) / ’ ér(t)dt>
b
< (KH) [ H(F7@),67(0)de

for each r € (0,1]. Hence we have

D <(KHP) / bﬁ(t)dt, (KHP) / bé(t)dt)

b T
= sup H( (KHP) / é(t)dt] )
re(0,1] a

= sup H ((KHP) / ’ F"(t)dt, (K HP) / ’ (;T(t)dt)

re(0,1]

(KHP) / ’ F(t)dt

a

)

b
< sup (KH) / H(E™ (2), G (t)) dt
re(0,1] a

b ~ ~
< (KH) / sup HCE(1),G7 (1)

b
— (KH) / D(E®), G(#))dt.
0

THEOREM 3.7. Let F : [a,b] — F(X) be measurable, weakly KH-
integrably bounded and scalarly KH-integrable on [a,b]. If each measurable
selection of F" : [a,b] — CWK(X) is KHP-integrable on [a,b] for each
r € (0,1], then F : [a,b] — F(X) is KHP-integrable on [a, b].

Proof. Let [c,d] be a subinterval of [a, b]. Since F" : [a,b] — CW K (X) is
scalarly KH-integrable on [a, b] and each measurable selection of F” : [a, b] —
CW K (X) is KHP-integrable on [a,b] for each r € (0, 1], by Theorem 2.5
F" :[a,b] — CWK(X) is KHP-integrable on [a, b] for each 7 € (0, 1]. Hence
A, = (KHP) fcd Fr(t)dt € CWK(X) for each r € (0,1]. For r,r € (0,1]
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with . < 7, F™(t) D F"(t) for each t € [a,b]. By Lemma 3.3 A,, =
(KHP) [* Fri(t)dt D (KHP) [* Fr2(t)dt = A,,. Let r € (0,1] and {r,}
be a sequence in (0, 1] such that r; <71y <73 <--- and nhﬂng0 rn = 7. Then
F"(t) = N>, F"(t) for each t € [a,b]. By Theorem 2.4 nan;o s(z*, F™(t)) =
s(z*, F"(t)) for each t € [a,b] and 2* € X*. Foreachn € N, |s(z*, F™ (t))| <
|z*F1|(t) for each t € [a,b] and z* € X*. Since F : [a,b] — F(X) is
scalarly KH-integrable and weakly KH-integrably bounded on [a, b], by the
Dominated Convergence Theorem for the Kurzweil-Henstock integral we

have
lim s(z*, A, )= lim (KH) / ds(x*,ﬁr"(t))dt
n=>00 n—>00 e ~
:(KH)/ s(x*, F"(t))dt
:s(x*,A:)

for each z* € X*. By Theorem 2.4 A, = N;2; A, . By Theorem 2.3 there
exists up q € F(X) such that [up q]" = A, = (KHP) fcd F"(t) dt for each
r € (0,1]. Hence F : [a,b] — F(X) is KHP-integrable on [a, b). O

The following theorem is the Dominated Convergence Theorem for KHP-

integrable fuzzy mappings.

THEOREM 3.8. Let F), : [a,b] — F(X) be KHP-integrable on [a,b] for
each n € N, F : [a,b] — F(X) measurable and scalarly KH-integrable on
[a,b] and nlln;o D(E,(t), F(t)) = 0 on [a,b]. If there exists an KH-integrable
real-valued function h such that |[FO(t)|| < h(t) on [a,b] for each n € N and
each measurable selection of F" : [a,b] — CW K (X) is KHP-integrable on
la,b] for each r € (0,1], then F : [a,b] — F(X) is KHP-integrable on [a, b]

and

lim D ((KHP) /b F,(t)dt,(KHP) /bF(t)dt> = 0.

n— 00

Proof. Since lim D(F,(t), F(t)) = 0on [a,b], for each e > 0 and t € [a, b]
there exists N € N such that n > N = D(F,(t), F(t)) < e. For some n € N
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with n > N,

|FO(t)|| = D(F(t),0) < D(F(t), Fu(t)) + D(
<|[FO(t)|| + € < h(t) + €

w(t),0)

for each t € [a,b]. Since € > 0 is arbitrary, |[FO(t)|| < h(t) on [a,b]. Thus
F :[a,b] — F(X) is KH-integrably bounded and so weakly KH-integrably
bounded on [a,b]. By Theorem 3.7, F : [a,b] — F(X) is KHP-integrable on
[a,b]. Since F, : [a,b] — F(X) is also KH-integrably bounded on [a, b] for
each n € N, by Theorem 3.6 and the Dominated Convergence Theorem for

the Kurzweil-Henstock integral we have

b b

D | (KHP) / F,(t)dt,(KHP) / F(t)dt

a a

b
< (KH)/ D(F,(t), F(t))dt — 0

as n — oo. Thus lim D ((KHP) [P F,)dt,(KHP) [ F(t)dt) —0. O

n—oo
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