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CONVERGENCE THEOREMS FOR THE Mα-INTEGRAL

Jae Myung Park*, Byung Moo Kim**, Young Kuk Kim***,
and Jong Tae Lim****

Abstract. In this paper, we investigate some properties of the
Mα-integral and prove convergence theorems for the Mα-integral.

1. Introduction and preliminaries

It is well-known [8] that the Monotone Convergence Theorem and the
Dominated Convergence Theorem are valid for the Lebesgue, Perron,
Denjoy, Henstock and C-integrals. In this paper, we prove convergence
theorems for the Mα-integral.

Throughout this paper, I0 = [a, b] is a compact interval in R. Let D
be a finite collection of interval-point pairs {(Ii, ξi)}n

i=1, where {Ii}n
i=1

are non-overlapping subintervals of I0 and let δ be a positive function
on I0, i.e. δ : I0 → R+. We say that D = {(Ii, ξi)}n

i=1 is
(1) a partial tagged partition of I0 if ∪n

i=1Ii ⊂ I0,
(2) a tagged partition of I0 if ∪n

i=1Ii = I0,
(3) a δ-fine McShane partition of I0 if Ii ⊂ (ξi − δ(ξi), ξi + δ(ξi)) and

ξi ∈ Io for all i = 1, 2, ..., n ,
(4) a δ-fine Mα-partition of I0 for a constant α > 0 if it is a δ-fine

McShane partition of I0 that satisfies the condition
n∑

i=1

dist(ξi, Ii) < α,

where dist(ξi, Ii) = inf{|t− ξi| : t ∈ Ii},
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2. Properties of the Mα-integral

We present the definition of the Mα-integral.

Definition 2.1. A function f : I0 → R is Mα-integrable if there
exists a real number A such that for each ε > 0 there is a positive
function δ(ξ) : I0 → R+ such that

|S(f,D)−A| < ε

for each δ-fine Mα-partition D = {(Ii, ξi)} of I0. The real number A
is called the Mα-integral of f on I0 and we write A =

∫
I0

f or A =
(Mα)

∫
I0

f .

The function f is Mα-integrable on the set E ⊂ I0 if the function
fχE is Mα-integrable on I0. We write

∫
E f =

∫
I0

fχE .

We can easily get the following theorems.

Theorem 2.2. A function f : I0 → R is Mα-integrable if and only if
for each ε > 0 there is a positive function δ(ξ) : I0 → R+ such that

|S(f,D1)− S(f,D2)| < ε

for any δ-fine Mα-partitions D1 and D2 of I0.

Theorem 2.3. Let f : I0 → R.
(1) If f is Mα-integrable on I0, then f is Mα-integrable on every

subinterval of I0.
(2) If f is Mα-integrable on each of the intervals I1 and I2, where I1

and I2 are non-overlapping and I1 ∪ I2 = I0, then f is Mα-integrable on
I0 and

∫
I1

f +
∫
I2

f =
∫
I0

f .

The following theorem shows that the Mα-integral is linear.

Theorem 2.4. Let f and g be Mα-integrable functions on I0. Then
(1) αf is Mα-integrable on I0 and

∫
I0

αf = α
∫
I0

f for each α ∈ R,

(2) f + g is Mα-integrable on I0 and
∫
I0

(f + g) =
∫
I0

f +
∫
I0

g.

Definition 2.5. Let F : I0 → R and let E be a subset of I0.
(a) F is said to be ACα on E if for each ε > 0 there is a constant

η > 0 and a positive function δ : I0 → R+ such that |∑i F (Ii)| < ε for
each δ-fine partial Mα-partition D = {(Ii, ξi)} of I0 satisfying ξi ∈ E
and

∑
i |Ii| < η.

(b) F is said to be ACGα on E if F is continuous on E and E can
be expressed as a countable union of sets on each of which F is ACα.
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Theorem 2.6. ([12]) If a function f : I0 → R is Mα-integrable on
I0 if and only if there is an ACGα function F on I0 such that F ′ = f
almost everywhere on I0.

Theorem 2.7. ([12]) Let f : I0 → R be a function.
(a) If f is McShane integrable on I0, then f is Mα-integrable on I0.
(b) If f is Mα-integrable on I0, then f is Henstock integrable on I0.

3. Convergence Theorems for the Mα-integral

We will prove the convergence theorems for the Mα-integral.

Theorem 3.1. (Uniform Convergence Theorem)
Let {fn} be a sequence of Mα-integral functions defined on [a, b] and

suppose that {fn} converges to f uniformly on [a, b]. Then f is Mα-
integral on [a, b] and ∫ b

a
f = lim

n→∞

∫ b

a
fn .

Proof. Given ε > 0, there exists N such that if n ≥ N , then

|fn(x)− f(x)| < ε

for all x ∈ [a, b]. Consequently, if m,n ≥ N , then

−2ε < fn(x)− fm(x) < 2ε for x ∈ [a, b]

Hence, −2ε(b− a) <
∫ b
a fn−

∫ b
a fm < 2ε(b− a), where

∣∣ ∫ b
a fn−

∫ b
a fm

∣∣ <

2ε(b− a). Since ε > 0 is arbitrary, the sequence {∫ b
a fn} is a Cauchy se-

quence. Let limn→∞
∫ b
a fn = L. If D = {(Ii, ξi)}p

i=1 is any Mα-partition
of [a, b] and n ≥ N , then

|S(fn, D)− S(f,D)| =
∣∣

p∑

i=1

[fn(ξi)− f(ξi)]|Ii|
∣∣

≤
p∑

i=1

|fn(ξi)− f(ξi)||Ii|

≤
p∑

i=1

ε|Ii| = ε(b− a) .

Choose a fixed number n0 ≥ N such that
∣∣ ∫ b

a fn0 − L
∣∣ < ε. Let δ be a

positive function on [a, b] such that
∣∣ ∫ b

a fn0 − S(fn0 , D)
∣∣ < ε whenever
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D is a δ-fine Mα-partition of [a, b]. Then

|S(f, D)− L| ≤ |S(f, D)− S(fn0 , D)|

+|S(fn0 , D)−
∫ b

a
fn0 |+ |

∫ b

a
fn0 − L|

< ε(b− a) + ε + ε = ε(b− a + 2).

Hence, f is Mα-integrable on [a, b] and
∫ b

a
f = L = lim

n→∞

∫ b

a
fn.

¤
Theorem 3.2. (Monotone Convergence Theorem)
Let {fn} be a monotone increasing sequence of Mα-integrable func-

tions defined on [a, b] and suppose that {fn} converges pointwise to a

measurable function f on [a, b]. If limn→∞
∫ b
a fn is finite, then f is Mα-

integrable on [a, b] and
∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Since the sequence {fn} is increasing, {fn−f1} is an increasing
sequence of nonnegative Mα-integrable functions on [a, b]. Since fn−f1 is
nonnegative for each n, it follows that each fn−f1 is Lebesgue integrable
on [a, b] and limn→∞(fn − f1) = f − f1.

By the Monotone Convergence Theorem for the Lebesgue integral,
the function f − f1 is Lebesgue integrable on [a, b] and

(L)
∫ b

a
(f − f1) = lim

n→∞(L)
∫ b

a
(fn − f1)

= lim
n→∞

∫ b

a
(fn − f1)

= lim
n→∞(

∫ b

a
fn −

∫ b

a
f1)

= lim
n→∞

∫ b

a
fn −

∫ b

a
f1.

Since f − f1 and f1 are Mα-integrable on [a, b], the function f = (f −
f1) + f1 is Mα-integrable on [a, b]. Hence,

∫ b

a
f =

∫ b

a
(f − f1) +

∫ b

a
f1
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= (L)
∫ b

a
(f − f1) +

∫ b

a
f1

= lim
n→∞

∫ b

a
fn −

∫ b

a
f1 +

∫ b

a
f1

= lim
n→∞

∫ b

a
fn.

¤

Theorem 3.3. (Dominated Convergence Theorem)
Let {fn} be a sequence of Mα-integrable functions defined on [a, b]

and suppose that {fn} converges to a measurable function f almost
everywhere on [a, b]. If there exist Mα-integrable functions g and h on
[a, b] such that g ≤ fn ≤ h almost everywhere on [a, b] for all n, then
the function f is Mα-integrable on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Since 0 ≤ fn − g ≤ h − g and h − g is a nonnegative Mα-
integrable function on [a, b], h − g is Lebesgue integrable. Since {fn}
converges pointwise to f almost everywhere on [a, b], 0 ≤ f − g ≤ h− g
almost everywhere on [a, b]. Hence, f − g is Lebesgue integrable. Since
fn−g converges pointwise to f−g almost everywhere on [a, b] and fn−g
is Lebesgue integrable on [a, b], by the Dominated Convergence Theorem
for the Lebesgue integral we have

(L)
∫ b

a
(f − g) = lim

n→∞(L)
∫ b

a
(fn − g).

Since f − g and g are Mα-integrable, f = (f − g) + g is Mα-integrable
and

∫ b

a
f =

∫ b

a
(f − g) +

∫ b

a
g

= (L)
∫ b

a
(f − g) +

∫ b

a
g

= lim
n→∞(L)

∫ b

a
(fn − g) +

∫ b

a
g

= lim
n→∞

∫ b

a
(fn − g) +

∫ b

a
g
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= lim
n→∞

∫ b

a
fn −

∫ b

a
g +

∫ b

a
g = lim

n→∞

∫ b

a
fn.

¤

Corollary 3.4. Let {fn} be a sequence of Mα-integrable functions
defined on [a, b] and suppose that {fn} converges to a measurable func-
tion f almost everywhere on [a, b]. If there exist an Mα-integrable func-
tion g and a Henstock integrable function h such that g ≤ fn ≤ h almost
everywhere on [a, b] for all n, then f is Mα-integrable on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

Proof. Since 0 ≤ fn− g ≤ h− g and h− g is a nonnegative Henstock
integrable function on [a, b], h−g is Lebesgue integrable on [a, b]. Hence,
h = (h − g) + g is Mα-integrable on [a, b]. By Theorem 3.3, f is Mα-
integrable on [a, b] and

∫ b

a
f = lim

n→∞

∫ b

a
fn.

¤

We begin with the concept of uniform Mα-integrability. The idea
behind this concept is that there exists a single positive function δ that
works for all of the functions.

Definition 3.5. Let {fn} be a sequence of Mα-integrable functions
defined on I0. The sequence {fn} is uniformly Mα-integrable on I0 if for
each ε > 0 there exists a positive function δ : I0 → R+ such that

|S(fn, D)−
∫

I0

fn| < ε

for all n, whenever D = {(Ii, ξi)}n
i=1 is a δ-fine Mα-partition of I0

Theorem 3.6. Assume that {fn} is uniformly Mα-integrable on I0

such that

lim
n→∞ fn(ξ) = f(ξ).

Then the function f : I0 → R is Mα-integrable on I0 and we have

lim
n→∞

∫

I0

fn =
∫

I0

f.
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Proof. Since {fn} is uniformly Mα-integrable on I0, for each ε > 0
there is a positive function δ : I0 → R+ such that

|S(fn, D)−
∫

I0

fn| < ε

3

for all n, whenever D is a δ-fine Mα-partition of I0. Let D be a δ-fine
Mα-partition of I0. Since limn→∞ fn(ξ) = f(ξ), there exists an N ∈ N
such that

|S(fn, D)− S(f, D)| < ε

for all n > N . Then we have

|
∫

I0

fn −
∫

I0

fm|

≤ |S(f, D)−
∫

I0

fn|+ |S(f, D)−
∫

I0

fm|

≤ |S(fn, D)− S(f, D)|+ |S(fn, D)−
∫

I0

fn|

+ |S(fm, D)− S(f,D)|+ |S(fm, D)−
∫

I0

fm|

<
8
3
ε

for all m,n > N . Hence {∫I0
fn} is a Cauchy sequence. Let

lim
n→∞

∫

I0

fn = A.

Then there exists an M ∈ N such that | ∫I0
fn − A| < ε

3 for all n > M .
Take any δ-fine Mα-partition D = {(I, ξ)} of I0. Since limn→∞ fn(ξ) =
f(ξ), there exists a k > M such that |S(fk, D)− S(f, D)| < ε

3 .
Then we have

|S(f, D)−A|

≤ |S(f, D)− S(fk, D)|+ |S(fk, D)−
∫

I0

fk|+ |
∫

I0

fk −A|
< ε

Hence f is Mα-integrable on I0 and limn→∞
∫
I0

fn =
∫
I0

f . ¤
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