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SET-VALUED CHOQUET-PETTIS INTEGRALS

Chun-Kee Park

Abstract. In this paper, we introduce the Choquet-Pettis integral
of set-valued mappings and investigate some properties and conver-
gence theorems for the set-valued Choquet-Pettis integrals.

1. Introduction

Choquet [3] introduced the Choquet integral of real-valued functions
with respect to a fuzzy measure which is a generalization of the Lebesgue
integral. The notion of integral of set-valued mappings is very useful
in many branches of mathematics like mathematical economics, con-
trol theory, convex analysis, etc. Several types of integrals of set-valued
mappings were introduced and studied by Aumann [1], Di Piazza and
Musial [6,7], El Amri and Hess [9], Jang, Kil, Kim and Kwon [10],Jang
and Kwon [11], Zhang, Guo and Liu [17] and others. In [15] we intro-
duced the Choquet-Pettis integral of Banach-valued functions in terms
of the Choquet integral of real-valued functions.

In this paper, we introduce the Choquet-Pettis integral of set-valued
mappings which is a generalization of the set-valued Pettis integral and
investigate some properties and convergence theorems for the set-valued
Choquet-Pettis integral.
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2. Preliminaries

Throughout this paper, Ω denotes an abstract nonempty set and Σ
denotes a σ-algebra formed by subsets of Ω. X denotes a real Banach
space with dual X∗. C(X) denotes the family of all nonempty closed
subsets of X, CC(X) the family of all nonempty closed convex subsets of
X, CB(X) the family of all nonempty closed bounded convex subsets of
X, CWK(X) the family of all nonempty convex weakly compact subsets
of X.

For A ⊆ X and x∗ ∈ X∗, let s(x∗, A) = sup{x∗(x) : x ∈ A}, the
support function of A.

For A,B ∈ C(X), let H(A,B) denote the Hausdorff metric of A and
B defined by

H(A,B) = max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
,

where d(a,B) = infb∈B ‖a− b‖ and d(b, A) = infa∈A ‖a− b‖. Especially,

H(A,B) = sup
‖x∗‖≤1

|s(x∗, A)− s(x∗, B)|

whenever A,B are convex sets. The number ‖A‖ is defined by

‖A‖ = H(A, {0}) = sup
x∈A
‖x‖.

If A ∈ CB(X) and x∗1, x
∗
2 ∈ X∗, then

|s(x∗1, A)− s(x∗2, A)| ≤ ‖x∗1 − x∗2‖‖A‖.
Note that (CWK(X), H) is a complete metric space.

The mapping F : [a, b] → C(X) is called a set-valued mapping. F
is said to be scalarly measurable if for every x∗ ∈ X∗, the real-valued
function s(x∗, F ) is measurable.

Definition 2.1. ([16]) A fuzzy measure on a measurable space (Ω,Σ)
is an extended real-valued set function µ : Σ→ [0,∞] satisfying

(i) µ(∅) = 0,
(ii) µ(A) ≤ µ(B) whenever A ⊂ B, A,B ∈ Σ.
When µ(Ω) <∞, we say that µ is finite. When µ is finite, we define

the conjugate µc of µ by

µc(A) = µ(Ω)− µ(AC),

where AC is the complement of A ∈ Σ.
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A fuzzy measure µ is said to be lower semi-continuous if it satisfies

A1 ⊂ A2 ⊂ · · · implies µ(∪∞n=1An) = lim
n→∞

µ(An).

A fuzzy measure µ is said to be upper semi-continuous if it satisfies

A1 ⊃ A2 ⊃ · · · and µ(A1) <∞ implies µ(∩∞n=1An) = lim
n→∞

µ(An).

A fuzzy measure µ is said to be continuous if it is both lower and
upper semi-continuous.

The class of real-valued measurable functions is denoted by M and
the class of nonnegative real-valued measurable functions is denoted by
M+.

Definition 2.2. ([3,12]) (i) The Choquet integral of f ∈ M+ with
respect to a fuzzy measure µ on A ∈ Σ is defined by

(C)

∫
A

fdµ =

∫ ∞
0

µ((f ≥ r) ∩ A)dr,

where the right-hand side integral is the Lebesgue integral and (f ≥
r) = {ω ∈ Ω | f(ω) ≥ r} for all r ≥ 0.

If (C)
∫
A
fdµ < ∞, then we say that f is Choquet integrable on A

with respect to µ. Instead of (C)
∫

Ω
fdµ, we will write (C)

∫
fdµ.

(ii) Suppose µ(Ω) <∞. The Choquet integral of f ∈M with respect
to a fuzzy measure µ on A ∈ Σ is defined by

(C)

∫
A

fdµ = (C)

∫
A

f+dµ− (C)

∫
A

f−dµc,

where f+ = f ∨ 0 and f− = −(f ∧ 0). When the right-hand side is
∞−∞, the Choquet integral is not defined. If (C)

∫
A
fdµ is finite, then

we say that f is Choquet integrable on A with respect to µ.

The Choquet integral is a generalization of the Lebesgue integral,
since they coincide when µ is a classical σ−additive measure.

Definition 2.3. ([15]) A function f : Ω→ X is called Choquet-Pettis
integrable if for each x∗ ∈ X∗ the function x∗f is Choquet integrable and
for every A ∈ Σ there exists xA ∈ X such that x∗(xA) = (C)

∫
A
x∗fdµ

for all x∗ ∈ X∗. The vector xA is called the Choquet-Pettis integral of f
on A and is denoted by (CP )

∫
A
fdµ.
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Let f, g ∈M . f and g are said to be comonotonic if f(ω) < f(ω′)⇒
g(ω) ≤ g(ω′) for ω, ω′ ∈ Ω. We denote f ∼ g when f and g are comono-
tonic [3]. A sequence {fn} of real-valued measurable functions is said to
converge to f in distribution, in symbols fn D−→ f , if

lim
n→∞

µ((fn ≥ r)) = µ(f ≥ r)) e.c.,

where “e.c.” stands “except at most countably many values of r” [5, 14].

Theorem 2.4. ([18]) Let A ∈ CC(X). Then the support function
s(·, A) : X∗ → [−∞,∞] satisfies the followings:

(1) s(·, A) is positively homogeneous, i.e., s(λx∗, A) = λs(x∗, A) for all
λ ≥ 0 and x∗ ∈ X∗;

(2) s(·, A) is a convex function on X∗;
(3) s(·, A) is weak∗ lower semi-continuous on X∗.

Conversely, if a function ϕ : X∗ → [−∞,∞] satisfies the conditions
(1)-(3), then there exists A ∈ CC(X) such that ϕ(x∗) = s(x∗, A) for
each x∗ ∈ X∗. The set A is unique and given by A = {x ∈ X : x∗(x) ≤
ϕ(x∗) for all x∗ ∈ X∗}.

Theorem 2.5. ([18]) If An ∈ CWK(X) for each n ∈ N and
limn→∞ s(x

∗, An) exists for each x∗ ∈ X∗, then there exists an M > 0
such that supn∈N ‖An‖ ≤M .

3. Results

In this section, we introduce the Choquet-Pettis integral of set-valued
mappings and obtain some properties and convergence theorems for the
Choquet-Pettis integral. In the sequel, µ denotes a finite fuzzy measure
on a measurable space (Ω,Σ).

Definition 3.1. A set-valued mapping F : Ω→ CWK(X) is said to
be Choquet-Pettis integrable on Ω if for each x∗ ∈ X∗ s(x∗, F ) is Choquet
integrable on Ω and for each A ∈ Σ there exists CA ∈ CWK(X) such
that s(x∗, CA) = (C)

∫
A
s(x∗, F )dµ for all x∗ ∈ X∗. In this case, we write

CA = (CP )
∫
A
Fdµ.

The set-valued Choquet-Pettis integral is a generalization of the set-
valued Pettis integral. If µ is a classical complete σ−additive measure
on (Ω,Σ), then the set-valued Choquet-Pettis integral coincides with the
set-valued Pettis integral.
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F : Ω → CWK(X) and G : Ω → CWK(X) are said to be scalarly
comonotonic if for each x∗ ∈ X∗ s(x∗, F ) and s(x∗, G) are comonotonic.
In this case, we write F∼sG.

Theorem 3.2. (1) If F : Ω→ CWK(X) and G : Ω→ CWK(X) are
scalarly comonotonic and Choquet-Pettis integrable on Ω, then F +G is
Choquet-Pettis integrable on Ω and for each A ∈ Σ

(CP )

∫
A

(F +G) dµ = (CP )

∫
A

Fdµ+ (CP )

∫
A

Gdµ.

(2) If F : Ω→ CWK(X) is Choquet-Pettis integrable on Ω and a ≥ 0,
then aF is Choquet-Pettis integrable on Ω and for each A ∈ Σ

(CP )

∫
A

aFdµ = a(CP )

∫
A

Fdµ.

Proof. (1) Let A ∈ Σ. Since F : Ω → CWK(X) and G : Ω →
CWK(X) are Choquet-Pettis integrable on Ω, for each x∗ ∈ X∗ s(x∗, F )
and s(x∗, G) are Choquet integrable on Ω and there exists CA, DA ∈
CWK(X) such that s(x∗, CA) = (C)

∫
A
s(x∗, F )dµ and s(x∗, DA) =

(C)
∫
A
s(x∗, G)dµ for all x∗ ∈ X∗. Hence for each x∗ ∈ X∗ s(x∗, F +G)

is Choquet integrable on Ω. Since F : Ω → CWK(X) and G : Ω →
CWK(X) are scalarly comonotonic,

(C)

∫
A

[s(x∗, F ) + s(x∗, G)] dµ = (C)

∫
A

s(x∗, F )dµ+ (C)

∫
A

s(x∗, G)dµ

for all x∗ ∈ X∗. Hence

s(x∗, CA +DA) = s(x∗, CA) + s(x∗, DA)

= (C)

∫
A

s(x∗, F )dµ+ (C)

∫
A

s(x∗, G)dµ

= (C)

∫
A

[s(x∗, F ) + s(x∗, G)] dµ

= (C)

∫
A

s(x∗, F +G)dµ

for all x∗ ∈ X∗. Hence F +G is Choquet-Pettis integrable on Ω and

(CP )

∫
A

(F +G)dµ = (CP )

∫
A

Fdµ+ (CP )

∫
A

Gdµ.

(2) The proof is similar to (1).
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A set N ∈ Σ is called a null set with respect to µ if µ(A∪N) = µ(A)
for all A ∈ Σ [13]. The “almost everywhere” concept can be defined by
using the “null set” in the same way as the classical measure theory.

Theorem 3.3. Let f : Ω → X be Choquet-Pettis integrable on Ω
and F : Ω → CWK(X) and G : Ω → CWK(X) be Choquet-Pettis
integrable on Ω. Then

(1) if f(ω) ∈ F (ω) on Ω, then (CP )
∫

Ω
fdµ ∈ (CP )

∫
Ω
Fdµ;

(2) if F (ω) ⊆ G(ω) on Ω, then (CP )
∫

Ω
Fdµ ⊆ (CP )

∫
Ω
Gdµ;

(3) if F = G µ-a.e. and µc-a.e. on Ω, then (CP )
∫

Ω
Fdµ = (CP )

∫
Ω
Gdµ.

Proof. (1) Since f : Ω → X and F : Ω → CWK(X) are Choquet-
Pettis integrable on Ω, for each x∗ ∈ X∗ x∗f and s(x∗, F ) are Choquet in-
tegrable on Ω and (C)

∫
x∗fdµ = x∗

(
(CP )

∫
fdµ

)
and (C)

∫
s(x∗, F )dµ

= s
(
x∗, (CP )

∫
Fdµ

)
. Since f(ω) ∈ F (ω) on Ω, x∗f ≤ s(x∗, F ) on Ω

for all x∗ ∈ X∗ and so (C)
∫
x∗fdµ ≤ (C)

∫
s(x∗, F )dµ for all x∗ ∈ X∗.

Hence x∗
(
(CP )

∫
fdµ

)
≤ s

(
x∗, (CP )

∫
Fdµ

)
for all x∗ ∈ X∗. Since

(CP )
∫
Fdµ ∈ CWK(X), by the separation theorem (CP )

∫
Ω
fdµ ∈

(CP )
∫

Ω
Fdµ.

(2) The proof is similar to (1).
(3) Since F = G µ-a.e. and µc-a.e. on Ω, s(x∗, F )+ = s(x∗, G)+ µ-a.e.

on Ω and s(x∗, F )− = s(x∗, G)− µc-a.e. on Ω for all x∗ ∈ X∗. Hence

(C)

∫
s(x∗, F )dµ = (C)

∫
s(x∗, F )+dµ− (C)

∫
s(x∗, F )−dµc

= (C)

∫
s(x∗, G)+dµ− (C)

∫
s(x∗, G)−dµc

= (C)

∫
s(x∗, G)dµ

for all x∗ ∈ X∗. Thus s
(
x∗, (CP )

∫
Fdµ

)
= s

(
x∗, (CP )

∫
Gdµ

)
for all

x∗ ∈ X∗. Since (CP )
∫
Fdµ, (CP )

∫
Gdµ ∈ CWK(X), by the separa-

tion theorem (CP )
∫

Ω
Fdµ = (CP )

∫
Ω
Gdµ.

A set-valued mapping F : Ω→ C(X) is said to be Choquet integrably
bounded on Ω if there exists a Choquet integrable function g : Ω → R+

such that ‖F (ω)‖ = supx∈F (ω)‖x‖ ≤ g(ω) for all ω ∈ Ω.

Theorem 3.4. Let µ be a continuous fuzzy measure and let X be a
reflexive Banach space. If F : Ω → CWK(X) is a scalarly measurable
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and Choquet integrably bounded set-valued mapping on Ω such that
s(x∗, F ) ∼ s(y∗, F ) for each x∗, y∗ ∈ X∗, then F : Ω → CWK(X) is
Choquet-Pettis integrable on Ω.

Proof. Since F : Ω → CWK(X) is scalarly measurable, s(x∗, F ) is
measurable for all x∗ ∈ X∗. Since F : Ω → CWK(X) is Choquet
integrably bounded on Ω, there exists a Choquet integrable function
g : Ω→ R+ such that ‖F (ω)‖ ≤ g(ω) for all ω ∈ Ω. Since g is Choquet
integrable on Ω, ‖x∗‖g is also Choquet integrable on Ω for all x∗ ∈ X∗.
Since s(x∗, F )+ ≤ ‖x∗‖g on Ω for all x∗ ∈ X∗, by [15, Remark 3.9]
s(x∗, F ) is Choquet integrable on Ω for all x∗ ∈ X∗. For each A ∈ Σ we
define a function ϕA : X∗ → R by ϕA(x∗) = (C)

∫
A
s(x∗, F )dµ. Then

ϕA is positively homogeneous and convex since s(x∗, F ) ∼ s(y∗, F ) for
each x∗, y∗ ∈ X∗. {x∗ ∈ X∗ : ‖x∗‖ < 1} is an open subset of X∗

and for each x∗ ∈ X∗ with ‖x∗‖ < 1, ϕA(x∗) = (C)
∫
A
s(x∗, F )dµ ≤

(C)
∫
A
‖x∗‖gdµ = ‖x∗‖(C)

∫
A
fsµ < (C)

∫
A
gdµ. Thus ϕA is bounded on

{x∗ ∈ X∗ : ‖x∗‖ < 1}. By [2, Proposition 19.9] ϕA is continuous on X∗.
By Theorem 2.4 there exists CA ∈ CC(X) such that ϕA(x∗) = s(x∗, CA)
for each x∗ ∈ X∗. Since |ϕA(x∗)| =

∣∣(C)
∫
A
s(x∗, F )dµ

∣∣ < ∞ for each
x∗ ∈ X∗, CA ∈ CB(X) by the Resonance Theorem. Since X is reflexive,
CA ∈ CWK(X) and s(x∗, CA) = ϕA(x∗) = (C)

∫
A
s(x∗, F )dµ for each

x∗ ∈ X∗. Hence F : Ω→ CWK(X) is Choquet-Pettis integrable on Ω.

Theorem 3.5. Let F : Ω→ CWK(X) be a set-valued mapping on Ω
such that s(x∗, F ) ∼ s(y∗, F ) for each x∗, y∗ ∈ X∗. Then the followings
are equivalent:

(1) F : Ω→ CWK(X) is Choquet-Pettis integrable on Ω.
(2) s(x∗, F ) is Choquet integrable on Ω for all x∗ ∈ X∗ and for each

A ∈ Σ the mapping ϕA : X∗ → R, ϕA(x∗) = (C)
∫
A
s(x∗, F )dµ, is

τ(X∗, X)-continuous, where τ(X∗, X) stands for the Mackey topol-
ogy on X∗.

Proof. (1) ⇒ (2). If F : Ω→ CWK(X) is Choquet-Pettis integrable
on Ω, then s(x∗, F ) is Choquet integrable on Ω for all x∗ ∈ X∗ and
for each A ∈ Σ there exists CA ∈ CWK(X) such that s(x∗, CA) =
(C)

∫
A
s(x∗, F )dµ for all x∗ ∈ X∗. Thus ϕA(x∗) = s(x∗, CA) for all

x∗ ∈ X∗. Since CA ∈ CWK(X), the mapping x∗ 7→ s(x∗, CA) is
τ(X∗, X)-continuous. Hence



388 Chun-Kee Park

ϕA : X∗ → R, ϕA(x∗) = (C)

∫
A

s(x∗, F )dµ,

is τ(X∗, X)-continuous.
(2) ⇒ (1). Assume that (2) holds. For each A ∈ Σ ϕA : X∗ → R,

ϕA(x∗) = (C)
∫
A
s(x∗, F )dµ, is positively homogeneous. Since s(x∗, F ) ∼

s(y∗, F ) for each x∗, y∗ ∈ X∗, ϕA : X∗ → R, ϕA(x∗) = (C)
∫
A
s(x∗, F )dµ,

is convex. Since ϕA is τ(X∗, X)-continuous, for each t ∈ R the set {x∗ ∈
X∗ : ϕA(x∗) ≤ t} is convex and τ(X∗, X)-closed. Hence {x∗ ∈ X∗ :
ϕA(x∗) ≤ t} is weak∗ closed. Thus ϕA is weak∗ lower semi-continuous.
By Theorem 2.4 there exists CA ∈ CC(X) such that ϕA(x∗) = s(x∗, CA)
for all x∗ ∈ X∗. Since |ϕA(x∗)| =

∣∣(C)
∫
s(x∗, F )dµ

∣∣ < ∞ for all x∗ ∈
X∗, CA ∈ CB(X) by the Resonance Theorem. Since ϕA is τ(X∗, X)-
continuous, CA is weakly compact, i.e., CA ∈ CWK(X). Thus there
exists CA ∈ CWK(X) such that s(x∗, CA) = (C)

∫
A
s(x∗, F )dµ for all

x∗ ∈ X∗. Therefore F : Ω→ CWK(X) is Choquet-Pettis integrable on
Ω.

Note that if F : Ω → CWK(X) is Choquet-Pettis integrable on Ω
then F : Ω→ CWK(X) is scalarly measurable on Ω.

A sequence {Fn} of scalarly measurable set-valued mappings is said to
converge scalarly to F in distribution, in symbols Fn sD−→ F , if s(x∗, Fn)

converges to s∗F in distribution for all x∗ ∈ X∗.
A sequence {An} in C(X) is said to converge scalarly to A ∈ C(X),

denoted by limn→∞An = A scalarly orAn → A scalarly, if limn→∞ s(x
∗, An) =

s(x∗, A) for all x∗ ∈ X∗.

Theorem 3.6. Let X be a reflexive Banach space and let {Fn} be
a sequence of Choquet-Pettis integrable set-valued mappings on Ω and
let F : Ω → CWK(X) be a set-valued mapping such that s(x∗, F ) ∼
s(y∗, F ) for each x∗, y∗ ∈ X∗. If {Fn} converges scalarly to F in distribu-
tion on Ω and G : Ω→ CWK(X) and H : Ω→ CWK(X) are Choquet-
Pettis integrable set-valued mappings on Ω such that µ((s(x∗, H) ≥
r)) ≤ µ((s(x∗, Fn) ≥ r)) ≤ µ((s(x∗, G) ≥ r)) e.c. for n = 1, 2, · · · and
x∗ ∈ X∗, then F is Choquet-Pettis integrable on Ω and (CP )

∫
Fndµ→

(CP )
∫
Fdµ scalarly.

Proof. Since G : Ω → CWK(X) and H : Ω → CWK(X) are
Choquet-Pettis integrable set-valued mappings on Ω, for each x∗ ∈ X∗
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s(x∗, G) and s(x∗, H) are Choquet integrable on Ω. Since {Fn} con-
verges scalarly to F in distribution on Ω, for each x∗ ∈ X∗ {s(x∗, Fn)}
converges to s(x∗, F ) in distribution on Ω. Since µ((s(x∗, H) ≥ r)) ≤
µ((s(x∗, Fn) ≥ r)) ≤ µ((s(x∗, G) ≥ r)) e.c. for n = 1, 2, · · · and
x∗ ∈ X∗, by [5, Theorem 8.9] s(x∗, F ) is Choquet ihtegrable on Ω
and limn→∞(C)

∫
A
s(x∗, Fn)dµ = (C)

∫
A
s(x∗, F )dµ for all A ∈ Σ and

x∗ ∈ X∗. Since Fn is Choquet-Pettis integrable on Ω for n = 1, 2, · · · ,
for each A ∈ Σ there exists Cn,A ∈ CWK(X) such that s(x∗, Cn,A) =
(C)

∫
A
s(x∗, Fn)dµ for n = 1, 2, · · · and x∗ ∈ X∗.

For each A ∈ Σ we define a function ϕA : X∗ → R by ϕA(x∗) =
(C)

∫
A
s(x∗, F )dµ. Then ϕA is positively homogeneous and convex since

s(x∗, F ) ∼ s(y∗, F ) for each x∗, y∗ ∈ X∗.
Since Cn,A = (CP )

∫
A
Fndµ ∈ CWK(X) for n = 1, 2, · · · and limn→∞s(x

∗,
(CP )

∫
A
Fndµ) = limn→∞(C)

∫
A
s(x∗, Fn)dµ = (C)

∫
A
s(x∗, F )dµ exists

for each x∗ ∈ X∗, by Theorem 2.5 there exists M > 0 such that
supn∈N‖(CP )

∫
A
Fndµ‖ ≤ M . For given ε > 0 let δ = ε/M . If x∗, y∗ ∈

X∗ and ‖x∗ − y∗‖ < δ, then

|ϕA(x∗)− ϕA(y∗)|

=

∣∣∣∣(C)

∫
A

s(x∗, F )dµ− (C)

∫
A

s(y∗, F )dµ

∣∣∣∣
= lim

n→∞

∣∣∣∣(C)

∫
A

s(x∗, Fn)dµ− (C)

∫
A

s(y∗, Fn)dµ

∣∣∣∣
= lim

n→∞

∣∣∣∣s(x∗, (CP )

∫
A

Fndµ)− s(y∗, (CP )

∫
A

Fndµ)

∣∣∣∣
≤ lim

n→∞
‖x∗ − y∗‖

∥∥∥∥(CP )

∫
A

Fndµ

∥∥∥∥
≤M‖x∗ − y∗‖
< Mδ = ε.

Thus ϕA is continuous on X∗. By Theorem 2.4 there exists CA ∈ CC(X)
such that ϕA(x∗) = s(x∗, CA) for each x∗ ∈ X∗.
Since |ϕA(x∗)| =

∣∣(C)
∫
A
s(x∗, F )dµ

∣∣ < ∞ for each x∗ ∈ X∗, CA ∈
CB(X) by the Resonance Theorem. SinceX is reflexive, CA ∈ CWK(X)
and s(x∗, CA) = ϕA(x∗) = (C)

∫
A
s(x∗, F )dµ for each x∗ ∈ X∗.

Hence F : Ω→ CWK(X) is Choquet-Pettis integrable on Ω and
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lim
n→∞

s(x∗, (CP )

∫
A

Fndµ) = lim
n→∞

(C)

∫
A

s(x∗, Fn)dµ

= (C)

∫
A

s(x∗, F )dµ = s(x∗, (CP )

∫
A

Fdµ).

Thus (CP )
∫
A
Fn dµ → (CP )

∫
A
Fdµ scalarly.

In particular, (CP )
∫
Fndµ→ (CP )

∫
Fdµ scalarly.

Theorem 3.7. Let µ be a continuous fuzzy measure and let X be
a reflexive Banach space and let {Fn} be a sequence of Choquet-Pettis
integrable set-valued mappings on Ω and let F : Ω → CWK(X) be a
set-valued mapping such that s(x∗, F ) ∼ s(y∗, F ) for each x∗, y∗ ∈ X∗.

(1) If Fn ↑ F scalarly on Ω and there exsits a Choquet integrable
function g such that (s(x∗, F1))− ≤ g on Ω for all x∗ ∈ X∗, then F
is Choquet-Pettis integrable on Ω and (CP )

∫
Fndµ ↑ (CP )

∫
Fdµ

scalarly.
(2) If Fn ↓ F scalarly on Ω and there exsits a Choquet integrable

function g such that (s(x∗, F1))+ ≤ g on Ω for all x∗ ∈ X∗, then F
is Choquet-Pettis integrable on Ω and (CP )

∫
Fndµ ↓ (CP )

∫
Fdµ

scalarly.

Proof. Since Fn ↑ F scalarly on Ω and there exsits a Choquet inte-
grable function g such that (s(x∗, F1))− ≤ g on Ω for all x∗ ∈ X∗, by [15,
Remark 3.9] s(x∗, F ) is Choquet integrable on Ω and (C)

∫
A
s(x∗, Fn)dµ ↑

(C)
∫
A
s(x∗, F )dµ for all A ∈ Σ and x∗ ∈ X∗. Since Fn is Choquet-

Pettis integrable on Ω for n = 1, 2, · · · , for each A ∈ Σ there exists
Cn,A ∈ CWK(X) such that

s(x∗, Cn,A) = (C)

∫
A

s(x∗, Fn)dµ, for n = 1, 2, · · · and x∗ ∈ X∗.

Using the same method as in the proof of Theorem 3.6, we can obtain
that F is Choquet-Pettis integrable on Ω.
Since (C)

∫
A
s(x∗, Fn)dµ ↑ (C)

∫
A
s(x∗, F )dµ for all A ∈ Σ and x∗ ∈ X∗,

(CP )
∫
A
Fndµ ↑ (CP )

∫
A
Fdµ scalarly for all A ∈ Σ. In particular,

(CP )
∫
Fndµ ↑ (CP )

∫
Fdµ scalarly.

(2) The proof is similar to (1).
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Theorem 3.8. Let µ be a continuous fuzzy measure and let X be
a reflexive Banach space and let {Fn} be a sequence of Choquet-Pettis
integrable set-valued mappings on Ω and let F : Ω → CWK(X) be a
set-valued mapping such that s(x∗, F ) ∼ s(y∗, F ) for each x∗, y∗ ∈ X∗.
If {Fn} converges scalarly to F µ-a.e. and µc-a.e. on Ω and there exsit
Choquet integrable functions g and h such that h ≤ s(x∗, Fn) ≤ g on Ω
for n = 1, 2, · · · and x∗ ∈ X∗, then F is Choquet-Pettis integrable on Ω
and (CP )

∫
Fndµ→ (CP )

∫
Fdµ scalarly.

Proof. Since {Fn} converges scalarly to F µ-a.e. on Ω, (s(x∗, Fn))+ →
(s(x∗, F ))+ µ-a.e. on Ω for all x∗ ∈ X∗. Since s(x∗, Fn) ≤ g on Ω for n =
1, 2, · · · and x∗ ∈ X∗, (s(x∗, Fn))+ ≤ g+ on Ω for n = 1, 2, · · · and x∗ ∈
X∗. By [17, Theorem 2.7] (s(x∗, F ))+ is Choquet integrable on Ω with
respect to µ and limn→∞(C)

∫
A

(s(x∗, Fn))+ dµ = (C)
∫
A

(s(x∗, F ))+dµ
for all A ∈ Σ and x∗ ∈ X∗. Since {Fn} converges scalarly to F µc-
a.e. on Ω and h ≤ s(x∗, Fn) on Ω for n = 1, 2, · · · and x∗ ∈ X∗,
(s(x∗, F ))− is also Choquet integrable on Ω with respect to µc and
limn→∞(C)

∫
A

(s(x∗, Fn))− dµc = (C)
∫
A

(s(x∗, F ))−dµc for all A ∈ Σ
and x∗ ∈ X∗. Hence s(x∗, F ) is Choquet integrable on Ω with respect
to µ and

lim
n→∞

(C)

∫
A

s(x∗, Fn)dµ

= lim
n→∞

[
(C)

∫
A

(s(x∗, Fn))+dµ− (C)

∫
A

(s(x∗, Fn))−dµc

]
= (C)

∫
A

(s(x∗, F ))+dµ− (C)

∫
A

(s(x∗, F ))−dµc

= (C)

∫
A

(s(x∗, F ))dµ

for all A ∈ Σ and x∗ ∈ X∗. Since Fn is Choquet-Pettis integrable
on Ω for n = 1, 2, · · · , for each A ∈ Σ there exists Cn,A ∈ CWK(X)
such that s(x∗, Cn,A) = (C)

∫
A
s(x∗, Fn)dµ for all x∗ ∈ X∗, i.e., Cn,A =

(CP )
∫
A
Fndµ.

Using the same method as in the proof of Theorem 3.6, we can ob-
tain that F is Choquet-Pettis integrable on Ω and for each A ∈ Σ
limn→∞(C)

∫
A
s(x∗, Fn)dµ = (C)

∫
A
s(x∗, F )dµ for all x∗ ∈ X∗. Thus

(CP )
∫
A
Fndµ → (CP )

∫
A
Fdµ scalarly. In particular, (CP )

∫
Fndµ →

(CP )
∫
Fdµ scalarly.
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