• 제목/요약/키워드: control of plant disease

검색결과 1,174건 처리시간 0.034초

흑돼지에서의 선천성 전신 멜라닌증 발생 증례 (Congenital systemic melanosis in a black mongrel pig)

  • 정예지;정지열;허지웅;백강현;이종형;이명헌;윤순식
    • 대한수의학회지
    • /
    • 제55권2호
    • /
    • pp.145-148
    • /
    • 2015
  • Four 3-day-old piglets with retarded growth were submitted to the Animal and Plant Quarantine Agency for diagnosis. Necropsy showed that one piglet had black spots ranging from 2 mm to 1 cm in diameter in the cerebellum, lungs, regional lymph nodes, and cecum. Histological findings were consistent with the gross appearance in which melanin pigmentation was observed in the organs mentioned above. Based on Fontana-Masson staining, we diagnosed this animal with systemic melanosis. To the best of our knowledge, this is the first case of systemic melanosis in black breeds of swine in Korea.

Production of Surfactin and Iturin by Bacillus licheniformis N1 Responsible for Plant Disease Control Activity

  • Kong, Hyun-Gi;Kim, Jin-Cheol;Choi, Gyoung-Ja;Lee, Kwang-Youll;Kim, Hyun-Ju;Hwang, Eul-Chul;Moon, Byung-Ju;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제26권2호
    • /
    • pp.170-177
    • /
    • 2010
  • Bacillus licheniformis N1, previously developed as a biofungicide formulation N1E to control gray mold disease of plants, was investigated to study the bacterial traits that may be involved in its biological control activity. Two N1E based formulations, bacterial cell based formulation PN1E and culture supernatant based formulation SN1E, were evaluated for disease control activity against gray mold disease of tomato and strawberry plants. Neither PN1E nor SN1E was as effective as the original formulation N1E. Fractionation of antifungal compounds from the bacterial culture supernatant of B. licheniformis N1 indicated that two different cyclic lipopeptides were responsible for the antimicrobial activity of the N1 strain. These two purified compounds were identified as iturin A and surfactin by HPLC and LCMS. The purified lipopeptides were evaluated for plant disease control activity against seven plant diseases. Crude extracts and purified compounds applied at 500 ${\mu}g/ml$ concentration controlled tomato gray mold, tomato late blight and pepper anthracnose effectively with over 70% disease control value. While iturin showed broad spectrum activity against all tested plant diseases, the control activity by surfactin was limited to tomato gray mold, tomato late blight, and pepper anthracnose. Although antifungal compounds from B. licheniformis N1 exhibited disease control activity, our results suggested that bacterial cells present in the N1E formulation also contribute to the disease control activity together with the antifungal compounds.

Effects of Fungicide Control of Downy Mildew (Pseudoperonospora cubensis) on Yield and Disease Management of Ridge Gourd (Luffa acutangula)

  • Deadman, M.L.;Kagadi, S.R.;Pawar, D.R.;Gadre, U.A.
    • The Plant Pathology Journal
    • /
    • 제18권3호
    • /
    • pp.147-151
    • /
    • 2002
  • Seven fungicides were compared for the control of downy mildew on midge gourd. All treatments had significantly lower rates of disease progress curves and disease severity levels than that of the control. The highest yields were obtained from crops treated with metalaxyl + mancozeb, fosetyl-Al, and chlorothalonil. These treatments also proved to be the most economical considering the treatment costs.

Antifungal Activity of Thymol against Aspergillus awamori and Botrytis aclada Isolated from Stored Onion Bulbs

  • Ji Yeon Oh;Siti Sajidah;Elena Volynchikova;Yu Jin Kim;Gyung Deok Han;Mee Kyung Sang;Ki Deok Kim
    • Mycobiology
    • /
    • 제50권6호
    • /
    • pp.475-486
    • /
    • 2022
  • The antifungal activity of thymol against Aspergillus awamori F23 and Botrytis aclada F15 in onions was examined through direct treatment with amended media and gaseous treatment with I-plates (plastic plates containing central partitions). The protective and curative control efficacy of thymol was examined 24 h before and after the inoculation of onion bulbs with the fungal isolates. Mycelial growth, sporulation, and spore germination of the isolates were inhibited on potato dextrose agar amended with various concentrations of thymol or acetic acid (positive control). Overall, thymol produced a stronger inhibitory effect on the mycelial growth and development of the isolates than acetic acid. Following gaseous treatment in I-plates, mycelial growth, sporulation, and spore germination of the isolates were inhibited at higher concentrations of thymol or acetic acid; however, acetic acid showed a little effect on the sporulation and spore germination of the isolates. Following the treatment of onion bulbs with 1000 mg L-1 of thymol 24 h before and after fungal inoculation, lesion diameter was greatly reduced compared with that following treatment with 0.5% ethanol (solvent control). Onion bulbs sprayed with thymol 24 h before fungal inoculation generally showed reduced lesion diameters by isolate F23 but not in isolate F15 compared with those sprayed 24 h after fungal inoculation. Collectively, thymol effectively inhibited the growth and development of A. awamori and B. aclada on amended media and in I-plates. In addition, spraying or fumigation of thymol is more desirable for effectively controlling these postharvest fungal pathogens during long-term storage conditions.

Current Status and Future Prospects of White Root Rot Management in Pear Orchards: A Review

  • Sawant, Shailesh S.;Choi, Eu Ddeum;Song, Janghoon;Seo, Ho-Jin
    • 식물병연구
    • /
    • 제27권3호
    • /
    • pp.91-98
    • /
    • 2021
  • The current social demand for organic, sustainable, and eco-friendly approaches for farming, while ensuring the health and productivity of crops is increasing rapidly. Biocontrol agents are applied to crops to ensure biological control of plant pathogens. Research on the biological control of white root rot disease caused by a soil-borne pathogen, Rosellinia necatrix, is limited in pears compared to that in apple and avocado. This pathogenic fungus has an extensive host range, and symptoms of this disease include rotting of roots, yellowing and falling of leaves, wilting, and finally tree death. The severity of the disease caused by R. necatrix, makes it the most harmful fungal pathogen infecting the economical fruit tree species, such as pears, and is one of the main limiting factors in pear farming, with devastating effects on plant health and yield. In addition to agronomic and cultural practices, growers use chemical treatments to control the disease. However, rising public concern about environmental pollution and harmful effects of chemicals in humans and animals has facilitated the search for novel and environmentally friendly disease control methods. This review will briefly summarize the current status of biocontrol agents, ecofriendly methods, and possible approaches to control disease in pear orchards.

Characterization of Antibacterial Strains against Kiwifruit Bacterial Canker Pathogen

  • Kim, Min-Jung;Chae, Dae-Han;Cho, Gyeongjun;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제35권5호
    • /
    • pp.473-485
    • /
    • 2019
  • Kiwifruit (Actinidia spp.) is an economically important crop and a bacterial canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the most destructive disease in kiwifruit production. Therefore, prevent and control of the disease is a critical issue in kiwifruit industry worldwide. Unfortunately, there is no reliable control methods have been developed. Recently, interest in disease control using microbial agents is growing. However, kiwifruit microbiota and their roles in the disease control is mainly remaining unknown. In this study, we secured bacterial libraries from kiwifruit ecospheres (rhizosphere, endospere, and phyllosphere) and screened reliable biocontrol strains against Psa. As the results, Streptomyces racemochromogenes W1SF4, Streptomyces sp. W3SF9 and S. parvulus KPB2 were selected as anti-Psa agents from the libraries. The strains showed forcible antibacterial activity as well as exceptional colonization ability on rhizosphere or phyllosphere of kiwifruit. Genome analyses of the strains suggested that the strains may produce several anti-Psa secondary metabolites. Our results will contribute to develop biocontrol strains against the kiwifruit canker pathogen and the disease management strategies.

Bio-control of Stem Rot in Jerusalem Artichoke (Helianthus tuberosus L.) in Field Conditions

  • Junsopa, Chutsuda;Saksirirat, Weerasak;Saepaisan, Suwita;Songsri, Patcharin;Kesmala, Thawan;Shew, Barbara B.;Jogloy, Sanun
    • The Plant Pathology Journal
    • /
    • 제37권5호
    • /
    • pp.428-436
    • /
    • 2021
  • Stem rot is a serious disease in Jerusalem artichoke (JA). To reduce the impact of this disease on yield and quality farmers often use fungicides, but this control method can be expensive and leave chemical residues. The objective of this study was to evaluate the efficacy of two biological control agents, Trichoderma harzianum T9 and Bacillus firmus BSR032 for control of Sclerotium rolfsii under field conditions. Four accessions of JA (HEL246, HEL65, JA47, and JA12) were treated or notreated with T. harzianum T9 and B. firmus BSR032 in a 4 × 2 × 2 factorial experiment in two fields (environments), one unfertilized and one fertilized. Plants were inoculated with S. rolfsii and disease was evaluated at 3-day intervals for 46 days. T. harzianum T9 and B. firmus BSR032 reduced disease incidence by 48% and 49%, respectively, whereas T. harzianum T9 + B. firmus BSR032 reduced disease incidence by 37%. The efficacy of T. harzianum T9 and B. firmus BSR032 for control of S. rolfsii was dependent on environments and genotypes. The expression of host plant resistance also depended on the environment. However, HEL246 showed consistently low disease incidence and severity index in both environments (fertilized and unfertilized). Individually, T. harzianum T9, B. firmus BSR032, or host plant resistance control stem rot caused by S. rolfsii in JA. However, no combination of these treatments provided more effective control than each alone.

우리나라 배추 뿌리혹병 연구 현홍과 향후과제 (Review of Researches on Clubroot Disease of Chinese Cabbage in Korea and Future Tasks for Its Management)

  • 김충희;조원대;이상범
    • 식물병연구
    • /
    • 제9권2호
    • /
    • pp.57-63
    • /
    • 2003
  • Clubroot disease of curcifer crops caused by Plasmodiophora brassicae had been first reported in 1928 in Korea, and maintained mild occurrence until 1980s. Since 1990s the disease has become severe in alpine areas of Kyonggi and Kangwon, gradually spread to plain fields throughout the country, and remains as the great-est limiting factor for its production. Researches on the disease has begun in late 1990s after experiencing severe epidemics. Survey of occurrence and etiological studies have been carried out, particularly, on the pathogen physiology, race identification, quantification of soil pathogen population, and host spectrum of the pathogen. Ecology of gall formation and its decay, yield loss assessment associated with time of infection, and relationships between crop rotation and the disease incidence was also studied during late 1990s. In studies of its control, more than 200 crucifer cultivars were evaluated for their resistance to the disease. Lime applica-tion to field soil was also attempted to reduce the disease incidence. Resistant radish and welsh onion were recommended as rotation crops with crucifers after 3-year field experiments. However, so for, most studies on clubroot disease in Korea have been focused on chemical control. Two fungicides, fluazinam and flusulfamide, were selected and extensively studied on their application technologies and combination effects with lime application or other soil treatment. To develop environmentally-friendly control methods, solar-disinfection of soil, phosphoric acid as a nontoxic compound, and root-parasiting endophytes as biocontrol agents were examined for their effects on the disease in fields. In the future, more researches are needed to be done on development of resistant varieties effective to several races of the pathogen, establishment of economically-sound crop rotation system, and improvement of soil-disinfection technique applicable to Korean field condi-tion, and development of methodology of pretreatment of fungicides onto seeds and seedbeds.

Seroprevalence and B1 gene Phylogeny of Toxoplasma gondii of Dogs and Cats in Republic of Korea

  • Park, Yeojin;Noh, Jinhyeong;Seo, Hyun-Ji;Kim, Keun-Ho;Min, Subin;Yoo, Mi-Sun;Yun, Bo-Ram;Kim, Jong-Ho;Choi, Eun-Jin;Cheon, Doo-Sung;Hong, Sung-Jong;Yoon, Soon-Seek;Cho, Yun Sang
    • Parasites, Hosts and Diseases
    • /
    • 제58권3호
    • /
    • pp.257-265
    • /
    • 2020
  • The outbreak of human toxoplasmosis can be attributed to ingestion of food contaminated with Toxoplasma gondii. Toxoplasmosis recently increased in domestic and stray dogs and cats. It prompted studies on the zoonotic infectious diseases transmitted via these animals. Sero- and antigen prevalences of T. gondii in dogs and cats were surveyed using ELISA and PCR, and B1 gene phylogeny was analyzed in this study. Toxoplasmosis antibodies were measured on sera of 403 stray cats, 947 stray dogs, 909 domestic cats, and 2,412 domestic dogs collected at nationwide regions, Korea from 2017 to 2019. In addition, whole blood, feces, and tissue samples were also collected from stray cats (1,392), stray dogs (686), domestic cats (3,040), and domestic dogs (1,974), and T. gondii-specific B1 gene PCR was performed. Antibody prevalence of stray cats, stray dogs, domestic cats, and domestic dogs were 14.1%, 5.6%, 2.3%, and 0.04%, respectively. Antigen prevalence of these animals was 0.5%, 0.2%, 0.1%, and 0.4%, respectively. Stray cats revealed the highest infection rate of toxoplasmosis, followed by stray dogs, domestic cats, and domestic dogs. B1 gene positives were 5 of stray cats, and identified to high/moderate pathogenic Type I/III group. These findings enforce that preventive hygienic measure should be strengthened at One Health level in dogs and cats, domestic and stray, to minimize human toxoplasmosis infections.

아인산염의 감자 역병 방제효과 (Control of Potato Late blight (Phytophthora infestans) with Postassium Phosphonate)

  • 홍순영;이광석;강영길;지형진
    • 식물병연구
    • /
    • 제9권3호
    • /
    • pp.179-182
    • /
    • 2003
  • 아인산염을 이용하여 감자 역병방제 시험을 실시한 결과 해발 100m 의 해안지역에서 방제가는 82.5%로 dimethomorph + copper oxychloride 500배액 처리시 방제가 75.9%보다 효과적이었다. 그러나 해발 300 m의 중산간 지대에서는 높은 습도와 잦은 비 날씨로 방제가가 40.0%로 낮았으나 농약처리 효과와 비슷하였다. 감자 역병 방제를 위한 아인산염 살포 간격은 15일이 적합하였다.