DOI QR코드

DOI QR Code

Current Status and Future Prospects of White Root Rot Management in Pear Orchards: A Review

  • Sawant, Shailesh S. (Pear Research Institute, National Institute of Horticultural & Herbal Science) ;
  • Choi, Eu Ddeum (Pear Research Institute, National Institute of Horticultural & Herbal Science) ;
  • Song, Janghoon (Pear Research Institute, National Institute of Horticultural & Herbal Science) ;
  • Seo, Ho-Jin (Pear Research Institute, National Institute of Horticultural & Herbal Science)
  • Received : 2021.07.17
  • Accepted : 2021.08.31
  • Published : 2021.09.30

Abstract

The current social demand for organic, sustainable, and eco-friendly approaches for farming, while ensuring the health and productivity of crops is increasing rapidly. Biocontrol agents are applied to crops to ensure biological control of plant pathogens. Research on the biological control of white root rot disease caused by a soil-borne pathogen, Rosellinia necatrix, is limited in pears compared to that in apple and avocado. This pathogenic fungus has an extensive host range, and symptoms of this disease include rotting of roots, yellowing and falling of leaves, wilting, and finally tree death. The severity of the disease caused by R. necatrix, makes it the most harmful fungal pathogen infecting the economical fruit tree species, such as pears, and is one of the main limiting factors in pear farming, with devastating effects on plant health and yield. In addition to agronomic and cultural practices, growers use chemical treatments to control the disease. However, rising public concern about environmental pollution and harmful effects of chemicals in humans and animals has facilitated the search for novel and environmentally friendly disease control methods. This review will briefly summarize the current status of biocontrol agents, ecofriendly methods, and possible approaches to control disease in pear orchards.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Horticultural and Herbal Science (NIHHS) funded by the Rural Development Administration (RDA) of the Republic of Korea (PJ01448401).

References

  1. Arakawa, M., Nakamura, H., Uetake, Y. and Matsumoto, N. 2002. Presence and distribution of double-stranded RNA elements in the white root rot fungus Rosellinia necatrix. Mycoscience 43: 21-26. https://doi.org/10.1007/s102670200004
  2. Araki, T. 1967. Soil conditions and the violet and white root rot diseases of fruit trees. Bull. Natl. Inst. Agric. Sci. Ser. C 21: 1-109.
  3. Arjona-Lopez, J. M. and Lopez-Herrera, C. J. 2020. Control of avocado white root rot using non-pathogenic Rosellinia necatrix isolates combined with low concentration of fluazinam. BioControl 65: 247-255. https://doi.org/10.1007/s10526-019-09992-8
  4. Arjona-Lopez, J. M. and Lopez-Herrera, C. J. 2021. Entoleuca sp. infected by mycoviruses as potential biocontrol agents of avocado white root rot. Eur. J. Plant Pathol. 159: 409-420. https://doi.org/10.1007/s10658-020-02171-x
  5. Arjona-Lopez, J. M., Telengech, P., Suzuki, N. and Lopez-Herrera, C. J. 2020. Coinfection of Rosellinia necatrix by a partitivirus and a virga-like virus is associated with hypovirulence. Eur. J. Plant Pathol. 158: 111-119. https://doi.org/10.1007/s10658-020-02058-x
  6. Arjona-Lopez, J. M., Telengech, P., Suzuki, N. and Lopez-Herrera, C. J. 2021. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix. Fungal Biol. 125: 69-76. https://doi.org/10.1016/j.funbio.2020.10.007
  7. Arjona-Lopez, J. M., Tienda, S., Arjona-Girona, I., Cazorla, F. M. and Lopez-Herrera, C. J. 2019. Combination of low concentrations of fluazinam and antagonistic rhizobacteria to control avocado white root rot. Biol. Control 136: 103996. https://doi.org/10.1016/j.biocontrol.2019.05.015
  8. CABI. 2020. Rosellinia necatrix (dematophora root rot). URL https://www.cabi.org/isc/datasheet/47860#toDistributionMaps [30 May 2021].
  9. Cazorla-Lopez, F. M., Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Biocontrol of white root rot on avocado plants using rhizobacterial strains. IOBC/WPRS Bull. 24: 79-82.
  10. Cazorla, F. M., Duckett, S. B., Bergstrom, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J. J. et al. 2006. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant-Microbe Interact. 19: 418-428. https://doi.org/10.1094/mpmi-19-0418
  11. Chiba, S., Salaipeth, L., Lin, Y.-H., Sasaki, A., Kanematsu, S. and Suzuki, N. 2009. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83: 12801-12812. https://doi.org/10.1128/JVI.01830-09
  12. Chun, J. and Kim, D.-H. 2021. Co-infection of a novel fusagravirus and a partitivirus in a Korean isolate of Rosellinia necatrix KACC40168. Virus Genes 57: 121-126. https://doi.org/10.1007/s11262-020-01809-6
  13. Cruz, A. F., de Oliveira Soares, W. R. and Blum, L. E. B. 2014. Impact of the arbuscular mycorrhizal fungi and bacteria on biocontrol of white root rot in fruit seedlings. J. Plant Physiol. Pathol. 2: 1
  14. Eguchi, N., Tokutake, H. and Yamagishi, N. 2008. Hot water treatment of Japanese pear trees is effective against white root rot caused by Rosellinia necatrix Prillieux. J. Gen. Plant Pathol. 74: 382-389. https://doi.org/10.1007/s10327-008-0115-3
  15. Freeman, S., Sztejnberg, A., Shabi, E. and Katan, J. 1990. Long-term effect of soil solarization for the control of Rosellinia necatrix in apple. Crop Prot. 9: 312-316. https://doi.org/10.1016/0261-2194(90)90110-S
  16. Garcia-Jimenez, J., Busto, J., Vicent, A. and Armengol, J. 2004. Control of Dematophora necatrix on Cyperus esculentus tubers by hot-water treatment. Crop Prot. 23: 619-623. https://doi.org/10.1016/j.cropro.2003.11.012
  17. Golafrouz, H., Safaie, N. and Khelghatibana, F. 2020. The reaction of some apple rootstocks to biocontrol of white root rot Rosellinia necatrix by Trichoderma harzianum in greenhouse. J. Crop Prot. 9: 577-589.
  18. Gonzalez-Sanchez, M. A., Cazorla, F. M., Ramos, C., Vicente, A. and Perez-Jimenez, R. M. 2004. Studies of soil and rhizosphera bacteria to improve biocontrol of avocado white root rot caused by Rosellinia necatrix: management of plant diseases an arthropod pests by BCAs and their integration in agricultural systems. IOBC/WPRS Bull. 27: 169-172.
  19. Gonzalez-Sanchez, M. A., de Vicente, A., Perez-Garcia, A., Perez-Jimenez, R., Romero, D. and Cazorla, F. M. 2013. Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biol. Control 67: 94-100. https://doi.org/10.1016/j.biocontrol.2013.08.009
  20. Kanematsu, S., Arakawa, M., Oikawa, Y., Onoue, M., Osaki, H., Nakamura, H. et al. 2004. A reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 94: 561-568. https://doi.org/10.1094/PHYTO.2004.94.6.561
  21. Khan, A. H. 1959. Biology and pathogenicity of Rosellinia necatrix (Hart.) Berl. Biologia 5: 199-245.
  22. Kim, K., Lee, H.-Y., Bae, W., Cho, M. and Ryu, H. 2019. Functional genomic analysis of Bacillus thuringiensis C25 reveals the potential genes regulating antifungal activity against Rosellinia necatrix. Korean J. Mycol. 47: 417-425. https://doi.org/10.4489/KJM.20190046
  23. Kondo, H., Kanematsu, S. and Suzuki, N. 2013. Viruses of the white root rot fungus, Rosellinia necatrix. Adv. Virus Res. 86: 177-214. https://doi.org/10.1016/B978-0-12-394315-6.00007-6
  24. Kulshrestha, S., Seth, C. A., Sharma, M., Sharma, A., Mahajan, R. and Chauhan, A. 2014. Biology and control of Rosellinia necatrix causing white root rot disease: a review. J. Pure Appl. Microbiol. 8: 1803-1814.
  25. Lee, D. H. 2002. Etiology and ecology of apple white root rot, caused by Rosellinia necatrix and its biological control. Ph.D. thesis. Kyungpook University, Daegu, Korea.
  26. Lee, D. H., Lee, S. W., Choi, K. H., Kim, D. A. and Uhm, J. Y. 2006. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 22: 375-380. https://doi.org/10.5423/PPJ.2006.22.4.375
  27. Lee, S. B., Chung, B. K., Jang, H. I., Kim, K. H. and Choi, Y. M. 1995. Incidence of soil-borne diseases in apple orchards in Korea. Korean J. Plant Pathol. 11: 132-138.
  28. Lee, S.-H., Kwon, Y., Shin, H., Kim, I.-J., Nam, S.-Y., Hong, E. Y. et al. 2016. Dieback of apple tree by major soil borne diseases in Chungbuk province from 2013 to 2015. Res. Plant Dis. 22: 198-201. https://doi.org/10.5423/RPD.2016.22.3.198
  29. Lee, S.-H., Shin, H., Chang, W.-B., Ryu, K.-Y., Kim, H. T., Cha, B. et al. 2020. Dieback reality of apple trees resulting from soil-borne fungal pathogens in South Korea from 2016 to 2019. Res. Plant Dis. 26: 88-94. https://doi.org/10.5423/RPD.2020.26.2.88
  30. Lopez-Herrera, C. J., Basallote-Ureba, M. J., Perez-Jimenez, R. M. and Melero-Vara, J. M. 1995. Control of Dematophora necatrix and Phytophthora cinnamomi in established avocado orchards by soil solarization. In: Proceedings of the World Avocado Congress III, pp. 404-407. Tel Aviv, Israel.
  31. Lopez-Herrera, C. J., Perez-Jimenez, R. M., Basallote-Ureba, M. J., Zea-Bonilla, T. and Melero-Vara, J. M. 1999. Loss of viability of Dematophora necatrix in solarized soils. Eur. J. Plant Pathol. 105: 571-576. https://doi.org/10.1023/A:1008755017575
  32. Matsumoto, N. 1998. Biological control of root diseases with dsRNA based on population structure of pathogens. Jpn. Agric. Res. Q. 32: 31-35.
  33. Matsumoto, N., Nakamura, H., Ikeda, K., Arakawa, M., Uetake, Y., Okabe, I. et al. 2002. Biocontrol of root diseases for fruit trees with dsRNA-merit and perspective. IOBC/WPRS Bull. 25: 61-64.
  34. Narvaez, I., Pliego Prieto, C., Palomo-Rios, E., Fresta, L., Jimenez-Diaz, R.M., Trapero-Casas, J. L. et al. 2020. Heterologous expression of the AtNPR1 gene in olive and its effects on fungal tolerance. Front. Plant Sci. 11: 308. https://doi.org/10.3389/fpls.2020.00308
  35. Nayak, S. B., Elango, K., Tamilnayagan, T. and Vinayaka, K. S. 2018. Role of ecological engineering in pest management. In: Applied Entomology and Zoology. Vol. 2, ed. by B. S. Chandel, pp. 1-18. AkiNik Publications, New Delhi, India.
  36. Pal, J., Sharma, S. K., Devi, S., Sharma, R., Raj, H., Karn, M. et al. 2020. Screening, identification, and colonization of fungal root endophytes against Dematophora necatrix: a ubiquitous pathogen of fruit trees. Egypt. J. Biol. Pest Control 30: 112. https://doi.org/10.1186/s41938-020-00312-2
  37. Pasini, L., Prodorutti, D., Pastorelli, S. and Pertot, I. 2016. Genetic diversity and biocontrol of Rosellinia necatrix infecting apple in northern Italy. Plant Dis. 100: 444-452. https://doi.org/10.1094/PDIS-04-15-0480-RE
  38. Perez-Jimenez, R. M. 2006. A review of the biology and pathogenicity of Rosellinia necatrix: the cause of white root rot disease of fruit trees and other plants. J. Phytopathol. 154: 257-266. https://doi.org/10.1111/j.1439-0434.2006.01101.x
  39. Pliego, C., Cazorla, F. M., Gonzalez-Sanchez, M. A., Perez-Jimenez, R. M., de Vicente, A. and Ramos, C. 2007. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res. Microbiol. 158: 463-470. https://doi.org/10.1016/j.resmic.2007.02.011
  40. Pliego, C., Kanematsu, S., Ruano-Rosa, D., de Vicente, A., LopezHerrera, C., Cazorla, F. M. et al. 2009. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genet. Biol. 46: 137-145. https://doi.org/10.1016/j.fgb.2008.11.009
  41. Ruano-Rosa, D., Arjona-Girona, I. and Lopez-Herrera, C. J. 2018. Integrated control of avocado white root rot combining low concentrations of fluazinam and Trichoderma spp. Crop Prot. 112: 363-370. https://doi.org/10.1016/j.cropro.2017.06.024
  42. Ruano Rosa, D. and Lopez-Herrera, C. J. 2009. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biol. Control 51: 66-71. https://doi.org/10.1016/j.biocontrol.2009.05.005
  43. Sasaki, A., Nakamura, H., Suzuki, N. and Kanematsu, S. 2016. Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res. 219: 73-82. https://doi.org/10.1016/j.virusres.2015.12.009
  44. Sharma, M. and Sharma, S. K. 2002. Effect of soil solarization on soil microflora with special reference to Dematophora necatrix in apple nurseries. Indian Phytopathol. 55: 158-162.
  45. Shiragane, H., Usami, T. and Shishido, M. 2019. Weed roots facilitate the spread of Rosellinia necatrix, the causal agent of white root rot. Microbes Environ. 34: 340-343. https://doi.org/10.1264/jsme2.me19013
  46. Sztejnberg, A., Freeman, S., Chet, I. and Katan, J. 1987. Control of Rosellinia necatrix in soil and in apple orchard by solarization and Trichoderma harzianum. Plant Dis. 71: 365-369. https://doi.org/10.1094/PD-71-0365
  47. Sztejnberg, A. and Madar, Z. 1980. Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Dis. 64: 662-664. https://doi.org/10.1094/PD-64-662
  48. Takahashi, M. and Nakamura, H. 2020. Toothpick method to evaluate soil antagonism against the white root rot fungus, Rosellinia necatrix. J. Gen. Plant Pathol. 86: 55-59. https://doi.org/10.1007/s10327-019-00887-1
  49. Takahashi, M., Tsutaki, Y. and Nakamura, H. 2020. Selection of Trichoderma products to enhance the control of loquat white root rot by hot water drip irrigation. J. Gen. Plant Pathol. 86: 419-422. https://doi.org/10.1007/s10327-020-00941-3
  50. Ten Hoopen, G. M. and Krauss, U. 2006. Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: a review. Crop Prot. 25: 89-107. https://doi.org/10.1016/j.cropro.2005.03.009
  51. Tienda, S., Vida, C., Lagendijk, E., de Weert, S., Linares, I., GonzalezFernandez, J. et al. 2020. Soil application of a formulated biocontrol rhizobacterium, Pseudomonas chlororaphis PCL1606, induces soil suppressiveness by impacting specific microbial communities. Front. Microbiol. 11: 1874. https://doi.org/10.3389/fmicb.2020.01874
  52. Wisler, G. C. and Norris, R. F. 2005. Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci. 53: 914-917. https://doi.org/10.1614/WS-04-051R.1
  53. Yasuda, M and Katoh, K. 1989. Characteristics of bacteria isolated from soil and roots of fruit trees. Soil Sci. Plant Nutr. 35: 501-508. https://doi.org/10.1080/00380768.1989.10434785
  54. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181