DOI QR코드

DOI QR Code

Bio-control of Stem Rot in Jerusalem Artichoke (Helianthus tuberosus L.) in Field Conditions

  • Junsopa, Chutsuda (Department of Agronomy, Faculty of Agriculture, Khon Kaen University) ;
  • Saksirirat, Weerasak (Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University) ;
  • Saepaisan, Suwita (Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University) ;
  • Songsri, Patcharin (Department of Agronomy, Faculty of Agriculture, Khon Kaen University) ;
  • Kesmala, Thawan (Department of Agronomy, Faculty of Agriculture, Khon Kaen University) ;
  • Shew, Barbara B. (Department of Entomology and Plant Pathology, North Carolina State University) ;
  • Jogloy, Sanun (Department of Agronomy, Faculty of Agriculture, Khon Kaen University)
  • Received : 2021.04.30
  • Accepted : 2021.07.15
  • Published : 2021.10.01

Abstract

Stem rot is a serious disease in Jerusalem artichoke (JA). To reduce the impact of this disease on yield and quality farmers often use fungicides, but this control method can be expensive and leave chemical residues. The objective of this study was to evaluate the efficacy of two biological control agents, Trichoderma harzianum T9 and Bacillus firmus BSR032 for control of Sclerotium rolfsii under field conditions. Four accessions of JA (HEL246, HEL65, JA47, and JA12) were treated or notreated with T. harzianum T9 and B. firmus BSR032 in a 4 × 2 × 2 factorial experiment in two fields (environments), one unfertilized and one fertilized. Plants were inoculated with S. rolfsii and disease was evaluated at 3-day intervals for 46 days. T. harzianum T9 and B. firmus BSR032 reduced disease incidence by 48% and 49%, respectively, whereas T. harzianum T9 + B. firmus BSR032 reduced disease incidence by 37%. The efficacy of T. harzianum T9 and B. firmus BSR032 for control of S. rolfsii was dependent on environments and genotypes. The expression of host plant resistance also depended on the environment. However, HEL246 showed consistently low disease incidence and severity index in both environments (fertilized and unfertilized). Individually, T. harzianum T9, B. firmus BSR032, or host plant resistance control stem rot caused by S. rolfsii in JA. However, no combination of these treatments provided more effective control than each alone.

Keywords

Acknowledgement

This research was funded by the Royal Golden Jubilee Ph.D. Program (jointly funded by Khon Kaen University and the Thailand Research Fund) (grant no. PHD/0110/2554); the Thailand Research Fund, through the Senior Scholar Project of Professor Dr. Sanun Jogloy (RTA 6180002). It was also supported in part by Peanut, Jerusalem artichoke, and Cassava Improvement Research Group, Khon Kaen University, Khon Kaen 40002, Thailand.

References

  1. Al-Askar, A. A. A., Ghoneem, K. M., Ezzat, A. E. S. and Saber, W. I. A. 2014. Improving growth and productivity as well as controlling Sclerotium rolfsii in Jerusalem Artichoke using biotic and abiotic agents. J. Pure Appl. Microbiol. 8:279-291.
  2. Ali, A. and Javaid, A. 2015. Screening of Trichoderma species for their biological control potential against Sclerotium rolfsii, the cause of collar rot disease of chickpea. Mycopath 13:93-96.
  3. Analytical Software. 2003. Statistix 8: analytical software user's manual. Analytical Software, Tallahassee, FL, USA. 396 pp.
  4. Anfok, G. H. 2000. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to cucumber mosaic virus. Crop Prot. 19:401-405. https://doi.org/10.1016/S0261-2194(00)00031-4
  5. Baker, R. 1968. Mechanisms of biological control of soil-borne pathogens. Annu. Rev. Phytopathol. 6:263-294. https://doi.org/10.1146/annurev.py.06.090168.001403
  6. Cawoy, H., Bettiol, W., Fickers, P. and Ongena, M. 2011. Bacillus-based biological control of plant diseases. In: Pesticides in the modern world: pesticides use and management, ed. by M. Stoytcheva, pp. 273-302. IntechOpen, Rijeka, Croatia.
  7. Chanutsa, N., Phonkerd, N. and Bunyatratchata, W. 2014. Potential of Pseudomonas aeruginosa to control Sclerotium rolfsii causing stem rot and collar rot disease of tomato. J. Adv. Agric. Technol. 1:132-135.
  8. Charirak, P., Saksirirat, W., Jogloy, S. and Saepaisan, S. 2016. Application of microorganisms for induced resistance in Jerusalem artichoke (Helianthus tuberosus L.) against stem rot caused by Sclerotium rolfsii Sacc. J. Pure Appl. Microbiol. 10:853-863.
  9. Doley, K., Dudhane, M., Borde, M. and Jite, P. K. 2014. Effects of Glomus fasciculatum and Trichoderma asperelloides in roots of groundnut (cv. Western-51) against pathogen Sclerotium rolfsii. Int. J. Phytopathol. 3:89-100. https://doi.org/10.33687/phytopath.003.02.0809
  10. Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron. Sustain. Dev. 28:33-46. https://doi.org/10.1051/agro:2007051
  11. Eid, K. 2013. Field applications of some bioagents and safety chemicals to control stem rot disease of Jerusalem artichoke (Helianthus tuberosus L.). J Appl. Sci. Res. 9:5825-5834.
  12. Elad, Y., Chet, I. and Henis, Y. 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Can. J. Microbiol. 28:719-725. https://doi.org/10.1139/m82-110
  13. El-Fiki, I. A. I., Shaheen, S. I. M., Youness, H. E. H. and Kamel, S. M. 2014. Evaluation of some bioagents for controlling damping off and root rot diseases of bean (Phaseolus vulgaris L.). Egypt. J. Biol. Pest. Control 24:275-282.
  14. El-Katatny, M. H., Somitsch, W., Robra, K. H., El-Katatny, M. S. and Gubitz, G. M. 2000. Production of chitinase and β-1,3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii. Food Technol. Biotechnol. 38:173-180.
  15. Errakhi, R., Bouteau, F., Lebrihi, A. and Barakate, M. 2007. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23:1503-1509. https://doi.org/10.1007/s11274-007-9394-7
  16. Ezzat, A. S., Ghoneem, K. M., Saber, W. I. A. and Al-Askar, A. A. 2015. Control of wilt, stalk and tuber rots diseases using Arbuscular mycorrhizal fungi, Trichoderma species and hydroquinone enhances yield quality and storability of Jerusalem artichoke (Helianthus tuberosus L.). Egypt. J. Biol. Pest Control 25:11-22.
  17. Farnworth, E. R. 1994. Feeding Jerusalem artichoke (Helianthus tuberosus) to pigs. J. Sci. Food Agric. 64:217-221. https://doi.org/10.1002/jsfa.2740640211
  18. Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869. https://doi.org/10.2307/3870235
  19. Harman, G. E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190-194. https://doi.org/10.1094/PHYTO-96-0190
  20. Junsopa, C., Jogloy, S., Saksirirat, W., Songsri, P., Kesmala, T. and Shew, B. B. 2017. Genotypic diversity of Jerusalem artichoke for resistance to stem rot caused by Sclerotium rolfsii under field conditions. Euphytica 213:164. https://doi.org/10.1007/s10681-017-1950-0
  21. Junsopa, C., Jogloy, S., Saksirirat, W., Songsri, P., Kesmala, T., Shew, B. B. and Patanothai, A. 2016. Inoculation with Sclerotium rolfsii, cause of stem rot in Jerusalem artichoke, under field conditions. Eur. J. Plant Pathol. 146:47-58. https://doi.org/10.1007/s10658-016-0890-1
  22. Kays, S. J. and Nottingham, S. F. 2007. Biology and chemistry of Jerusalem artichoke: Helianthus tuberosus L. Taylor & Francis, Florida, FL, USA. 496 pp.
  23. Li, L., Li, L., Wang, Y., Du, Y. and Qin, S. 2013. Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol. Lett. 35:471-477. https://doi.org/10.1007/s10529-012-1104-3
  24. Maneesuwan, P. and Sirithorn, P. 2013. Effect of Bacillus licheniformis BFP011 to inhibit Colletotrichum capsici, cause of Pepper anthracnose. Khon Kaen Agric. J. 41 Suppl 1:327-332 (in Thai).
  25. McCarter, S. M. and Kays, S. J. 1984. Disease limiting production of Jerusalem artichokes in Georgia. Plant Dis. 68:299-302. https://doi.org/10.1094/PD-69-299
  26. Mukherjee, P. K., Horwitz, B. A., Herrera-Estrella, A., Schmoll, M. and Kenerley, C. M. 2013. Trichoderma research in the genome era. Annu. Rev. Phytopathol. 51:105-129. https://doi.org/10.1146/annurev-phyto-082712-102353
  27. Nautiyal, C. S. and Dion, P. 2008. Molecular mechanisms of plant and microbe coexistence. Springer-Verlag, Berlin, Germany. 486 pp.
  28. Pattanapipitpaisal, P. and Kamlandharn, R. 2012. Screening of chitinolytic actinomycetes for biological control of Sclerotium rolfsii stem rot disease of chilli. Songklanakarin J. Sci. Technol. 34:387-393.
  29. Punja, Z. K., Carter, J. D., Campbell, G. M. and Rossell, E. L. 1986. Effects of calcium and nitrogen fertilizers, fungicides, and tillage practices on incidence of Sclerotium rolfsii on processing carrots. Plant Dis. 70:819-824. https://doi.org/10.1094/PD-70-819
  30. Puttha, R., Jogloy, S., Wangsomnuk, P. P., Srijaranai, S., Kesmala, T. and Patanothai, A. 2012. Genotypic variability and genotype by environment interactions for inulin content of Jerusalem artichoke germplasm. Euphytica 183:119-131. https://doi.org/10.1007/s10681-011-0520-0
  31. Roberfroid, M. B. 2007. Inulin-type fructans: functional food ingredients. J. Nutr. 137:2493S-2502S.
  32. Ruano-Rosa, D., Cazorla, F. M., Bonilla, N., Martin-Perez, R., De Vicente, A. and Lopez-Herrera, C. J. 2014. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur. J. Plant Pathol. 138:751-762. https://doi.org/10.1007/s10658-013-0347-8
  33. Sarangi, T. and Ramakrishnan, S. 2016. Influence of biomolecules of Bacillus spp. against phytopathogens: a review. Int. J. Curr. Microbiol. Appl. Sci. 5:131-134. https://doi.org/10.20546/ijcmas.2016.507.012
  34. Sennoi, R., Jogloy, S., Saksirirat, W., Kesmala, T. and Patanothai, A. 2013a. Genotypic variation of resistance to southern stem rot of Jerusalem artichoke caused by Sclerotium rolfsii. Euphytica 190:415-424. https://doi.org/10.1007/s10681-012-0813-y
  35. Sennoi, R., Jogloy, S., Saksirirat, W. and Patanothai, A. 2010. Pathogenicity test of Sclerotium rolfsii, a causal agent of Jerusalem artichoke (Helianthus tuberosus L.) stem rot. Asian J. Plant Sci. 9:281-284. https://doi.org/10.3923/ajps.2010.281.284
  36. Sennoi, R., Singkham, N., Jogloy, S., Boonlue, S., Saksirirat, W., Kesmala, T. and Patanothai, A. 2013b. Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot. 54:148-153. https://doi.org/10.1016/j.cropro.2013.08.011
  37. Singh, A. and Singh, H. B. 2004. Control of collar rot in mint (Mentha spp.) caused by Sclerotium rolfsii using biological means. Curr. Sci. 87:362-366.
  38. Spann, T. M. and Schumann, A. W. 2009. The role of plant nutrients in disease development with emphasis on citrus and huanglongbing. Proc. Fla. State. Hortic. Soc. 122:169-171.