Browse > Article
http://dx.doi.org/10.1080/12298093.2022.2158557

Antifungal Activity of Thymol against Aspergillus awamori and Botrytis aclada Isolated from Stored Onion Bulbs  

Ji Yeon Oh (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Siti Sajidah (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Elena Volynchikova (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Yu Jin Kim (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Gyung Deok Han (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Mee Kyung Sang (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Ki Deok Kim (Laboratory of Plant Disease and Biocontrol, Department of Plant Biotechnology, Korea University)
Publication Information
Mycobiology / v.50, no.6, 2022 , pp. 475-486 More about this Journal
Abstract
The antifungal activity of thymol against Aspergillus awamori F23 and Botrytis aclada F15 in onions was examined through direct treatment with amended media and gaseous treatment with I-plates (plastic plates containing central partitions). The protective and curative control efficacy of thymol was examined 24 h before and after the inoculation of onion bulbs with the fungal isolates. Mycelial growth, sporulation, and spore germination of the isolates were inhibited on potato dextrose agar amended with various concentrations of thymol or acetic acid (positive control). Overall, thymol produced a stronger inhibitory effect on the mycelial growth and development of the isolates than acetic acid. Following gaseous treatment in I-plates, mycelial growth, sporulation, and spore germination of the isolates were inhibited at higher concentrations of thymol or acetic acid; however, acetic acid showed a little effect on the sporulation and spore germination of the isolates. Following the treatment of onion bulbs with 1000 mg L-1 of thymol 24 h before and after fungal inoculation, lesion diameter was greatly reduced compared with that following treatment with 0.5% ethanol (solvent control). Onion bulbs sprayed with thymol 24 h before fungal inoculation generally showed reduced lesion diameters by isolate F23 but not in isolate F15 compared with those sprayed 24 h after fungal inoculation. Collectively, thymol effectively inhibited the growth and development of A. awamori and B. aclada on amended media and in I-plates. In addition, spraying or fumigation of thymol is more desirable for effectively controlling these postharvest fungal pathogens during long-term storage conditions.
Keywords
Antifungal activity; Aspergillus awamori; Botrytis aclada; onion; postharvest disease; thymol;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 McDonald MR, Jaime M, Hovius MHY. Management of diseases of onions and garlic. In: Naqvi SAMH, editor. Diseases of fruits and vegetables: diagnosis and management, Vol II. Dordrecht, Netherlands: Kluwer Academic Publishers; 2004. p. 149-200.
2 Ji SH, Kim TK, Keum YS, et al. The major postharvest disease of onion and its control with thymol fumigation during low-temperature storage. Mycobiology. 2018;46(3):242-253.   DOI
3 Lee JT, Bae DW, Park SH, et al. Occurrence and biological control of post-harvest decay in onion caused by fungi. Plant Pathol J. 2001;17:141-148.
4 Oh JY, Kim KD. Control strategies for pathogenic fungi on stored onion (Allium cepa) and garlic (Allium sativum): a review. Life Sci Nat Resour Res. 2016;24:31-40.
5 Oh JY, Han GD, Jeong JJ, et al. First report of Penicillium georgiense as a fungal pathogen of onion (Allium cepa L.). Crop Prot. 2015;72:83-89.   DOI
6 Ozer N, Koycu DN. Seed-borne fungal diseases of onion, and their control. In: Mukerji KG, editor. Disease management of fruits and vegetables: fruit and vegetable diseases, Vol. I. Dordrecht, Netherlands: Kluwer Academic Publishers; 2004. p. 281-306.
7 Sang MK, Han GD, Oh JY, et al. Penicillium brasilianum as a novel pathogen of onion (Allium cepa L.) and other fungi predominant on market onion in Korea. Crop Prot. 2014;65:138-142.   DOI
8 Chu CL, Liu WT, Zhou T. Fumigation of sweet cherries with thymol and acetic acid to reduce postharvest brown rot and blue mold rot. Fruits. 2001;56(2):123-130.   DOI
9 Mari M, Bautista-Banos S, Sivakumar D. Decay control in the postharvest system: role of microbial and plant volatile organic compounds. Postharvest Biol Technol. 2016;122:70-81.   DOI
10 Romanazzi G, Lichter A, Gabler FM, et al. Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biol Technol. 2012;63(1):141-147.   DOI
11 Tripathi P, Dubey NK. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol. 2004;32(3):235-245.   DOI
12 Droby S, Wisniewski M, Macarisin D, et al. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol. 2009;52(2):137-145.   DOI
13 Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004;94(3):223-253.   DOI
14 Antunes MDC, Cavaco AM. The use of essential oils for postharvest decay control. A review. Flavour Fragr. J. 2010;25(5):351-366.   DOI
15 Negi PS. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol. 2012;156(1):7-17.   DOI
16 Schillinger U, Geisen R, Holzapfel WH. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol. 1996;7(5):158-164.
17 Isman MB. Plant essential oils for pest and disease management. Crop Prot. 2000;19(8-10):603-608.   DOI
18 Sivakumar D, Bautista-Banos S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014;64:27-37.   DOI
19 Garcia R, Alves ES, Santos MP, et al. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz J Microbiol. 2008;39(1):163-168.   DOI
20 Kumar P, Mishra S, Malik A, et al. Biocontrol potential of essential oil monoterpenes against housefly, Musca domestica (Diptera: Muscidae). Ecotoxicol Environ Saf. 2014;100:1-6.   DOI
21 Sartoratto A, Machado ALM, Delarmelina C, et al. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol. 2004;35(4):275-280.   DOI
22 Maqbool M, Ali A, Alderson PG. Effect of cinnamon oil on incidence of anthracnose disease and postharvest quality of bananas during storage. Int J Agric Biol. 2010;12:516-520.
23 Perez-Alfonso CO, Martinez-Romero D, Zapata PJ, et al. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int J Food Microbiol. 2012;158(2):101-106.
24 Chillet M, Minier J, Hoarau M, et al. Potential use of thymol to control anthracnose development in mango. Eur J Plant Pathol. 2019;155(3):943-952.   DOI
25 Sellamuthu PS, Mafune M, Sivakumar D, et al. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado. J Sci Food Agric. 2013;93(12):3024-3031.   DOI
26 Arrebola E, Sivakumar D, Bacigalupo R, et al. Combined application of antagonist Bacillus amyloliquefaciens and essential oils for the control of peach postharvest diseases. Crop Prot. 2010;29(4):369-377.   DOI
27 Vitoratos A, Bilalis D, Karkanis A, et al. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Not Bot Hort Agrobot Cluj. 2013;41(1):86.
28 Hudaib M, Speroni E, Di Pietra AM, et al. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J Pharm Biomed Anal. 2002;29(4):691-700.   DOI
29 Meeran MFN, Javed H, Taee HA, et al. Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 2017;8:380. Article 380.
30 Nickavar B, Mojab F, Dolat-Abadi R. Analysis of the essential oils of two Thymus species from Iran. Food Chem. 2005;90(4):609-611.   DOI
31 Hassani A, Fathi Z, Ghosta Y, et al. Evaluation of plant essential oils for control of postharvest brown and gray mold rots on apricot. J Food Saf. 2012;32(1):94-101.   DOI
32 Kong J, Xie Y, Yu H, et al. Synergistic antifungal mechanism of thymol and salicylic acid on Fusarium solani. Food Sci Technol. 2021;140:110787.
33 Rasooli I, Rezaei MB, Allameh A. Growth inhibition and morphological alterations of Aspergillus Niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Cont. 2006;17(5):359-364.   DOI
34 Xu L, Song J-Q, Wang Y-L, et al. Thymol improves salinity tolerance of tobacco by increasing the sodium ion efflux and enhancing the content of nitric oxide and glutathione. BMC Plant Biol. 2022;22(1):31.
35 Ji P, Momol MT, Olson SM, et al. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis. 2005;89(5):497-500.   DOI
36 De Melo JO, Blank AF, Nunes RDS, et al. Essential oils of Lippia gracilis and Lippia sidoides chemotypes and their major compounds carvacrol and thymol: nanoemulsions and antifungal activity against Lasiodiplodia theobromae. Res Soc Dev. 2022;11(3):e36511326715.
37 Mossini SAG, Arroteia CC, Kemmelmeier C. Effect of neem leaf extract and neem oil on Penicillium growth, sporulation, morphology and ochratoxin a production. Toxins (Basel). 2009;1(1):3-13.   DOI
38 Ahmad A, Khan A, Akhtar F, et al. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis. 2011;30(1):41-50.   DOI
39 Shcherbakova L, Mikirtyuk O, Arslanova L, et al. Studying the ability of thymol to improve fungicidal effects of tebuconazole and difenoconazole against some plant pathogenic fungi in seed or foliar treatments. Front Microbiol. 2021;12:629429.
40 Ranjbar A, Ramezanian A, Shekarforoush S, et al. Antifungal activity of thymol against the main fungai causing pomegranate fruit rot by suppressing the activity of cell wall degrading enzymes. Food Sci Technol. 2022;161:113303.
41 Cho J, Bae RN, Lee SK. Current research status of post-harvest technology of onion (Allium cepa L.). Korean J Hort Sci Tech. 2010;28:522-527.
42 Chen G-Q, Sun D, Yang J-M, et al. Synthesis of sulfonate derivatives of carvacrol and thymol as anti-oomycetes agents. J Asian Nat Prod Res. 2021;23(7):692-702.   DOI
43 Liu WT, Chu CL, Zhou T. Thymol and acetic acid vapors reduce postharvest brown rot of apricots and plums. Hort Sci. 2002;37(1):151-156.
44 Pelaez AL, Catano CS, Yepes EQ, et al. Inhibitory ~ activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Cont. 2012;24:177-183.   DOI
45 Kim YK, Lee SB, Lee SS, et al. Cultural and chemical approaches for controlling postharvest diseases of garlics. Korean J Pest Sci. 2003;7:139-148.
46 Tyson JL, Fullerton RA. Effect of soil-borne inoculum on incidence of onion black mould (Aspergillus niger). New Zealand Plant Prot. 2004;57:138-141.   DOI
47 El-Mougy NS, El-Gamal NG, Abdel-Kader MM. Pre-storage application of some essential oils and food preservatives against black mould incidence of garlic cloves during storage. Arch Phytopathol Plant Prot. 2009;42(11):1059-1068.   DOI
48 Raju K, Naik MK. Effect of pre-harvest spray of fungicides and botanicals on storage diseases of onion. Indian Phytopathol. 2006;59:133-141.