Browse > Article
http://dx.doi.org/10.5423/RPD.2021.27.3.91

Current Status and Future Prospects of White Root Rot Management in Pear Orchards: A Review  

Sawant, Shailesh S. (Pear Research Institute, National Institute of Horticultural & Herbal Science)
Choi, Eu Ddeum (Pear Research Institute, National Institute of Horticultural & Herbal Science)
Song, Janghoon (Pear Research Institute, National Institute of Horticultural & Herbal Science)
Seo, Ho-Jin (Pear Research Institute, National Institute of Horticultural & Herbal Science)
Publication Information
Research in Plant Disease / v.27, no.3, 2021 , pp. 91-98 More about this Journal
Abstract
The current social demand for organic, sustainable, and eco-friendly approaches for farming, while ensuring the health and productivity of crops is increasing rapidly. Biocontrol agents are applied to crops to ensure biological control of plant pathogens. Research on the biological control of white root rot disease caused by a soil-borne pathogen, Rosellinia necatrix, is limited in pears compared to that in apple and avocado. This pathogenic fungus has an extensive host range, and symptoms of this disease include rotting of roots, yellowing and falling of leaves, wilting, and finally tree death. The severity of the disease caused by R. necatrix, makes it the most harmful fungal pathogen infecting the economical fruit tree species, such as pears, and is one of the main limiting factors in pear farming, with devastating effects on plant health and yield. In addition to agronomic and cultural practices, growers use chemical treatments to control the disease. However, rising public concern about environmental pollution and harmful effects of chemicals in humans and animals has facilitated the search for novel and environmentally friendly disease control methods. This review will briefly summarize the current status of biocontrol agents, ecofriendly methods, and possible approaches to control disease in pear orchards.
Keywords
Biocontrol; Pear orchards; Soil borne disease; Rosellinia necatrix; Virocontrol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S. B., Chung, B. K., Jang, H. I., Kim, K. H. and Choi, Y. M. 1995. Incidence of soil-borne diseases in apple orchards in Korea. Korean J. Plant Pathol. 11: 132-138.
2 Lee, S.-H., Kwon, Y., Shin, H., Kim, I.-J., Nam, S.-Y., Hong, E. Y. et al. 2016. Dieback of apple tree by major soil borne diseases in Chungbuk province from 2013 to 2015. Res. Plant Dis. 22: 198-201.   DOI
3 Lopez-Herrera, C. J., Basallote-Ureba, M. J., Perez-Jimenez, R. M. and Melero-Vara, J. M. 1995. Control of Dematophora necatrix and Phytophthora cinnamomi in established avocado orchards by soil solarization. In: Proceedings of the World Avocado Congress III, pp. 404-407. Tel Aviv, Israel.
4 Lopez-Herrera, C. J., Perez-Jimenez, R. M., Basallote-Ureba, M. J., Zea-Bonilla, T. and Melero-Vara, J. M. 1999. Loss of viability of Dematophora necatrix in solarized soils. Eur. J. Plant Pathol. 105: 571-576.   DOI
5 Matsumoto, N. 1998. Biological control of root diseases with dsRNA based on population structure of pathogens. Jpn. Agric. Res. Q. 32: 31-35.
6 Matsumoto, N., Nakamura, H., Ikeda, K., Arakawa, M., Uetake, Y., Okabe, I. et al. 2002. Biocontrol of root diseases for fruit trees with dsRNA-merit and perspective. IOBC/WPRS Bull. 25: 61-64.
7 Arjona-Lopez, J. M. and Lopez-Herrera, C. J. 2021. Entoleuca sp. infected by mycoviruses as potential biocontrol agents of avocado white root rot. Eur. J. Plant Pathol. 159: 409-420.   DOI
8 CABI. 2020. Rosellinia necatrix (dematophora root rot). URL https://www.cabi.org/isc/datasheet/47860#toDistributionMaps [30 May 2021].
9 Arakawa, M., Nakamura, H., Uetake, Y. and Matsumoto, N. 2002. Presence and distribution of double-stranded RNA elements in the white root rot fungus Rosellinia necatrix. Mycoscience 43: 21-26.   DOI
10 Arjona-Lopez, J. M., Tienda, S., Arjona-Girona, I., Cazorla, F. M. and Lopez-Herrera, C. J. 2019. Combination of low concentrations of fluazinam and antagonistic rhizobacteria to control avocado white root rot. Biol. Control 136: 103996.   DOI
11 Araki, T. 1967. Soil conditions and the violet and white root rot diseases of fruit trees. Bull. Natl. Inst. Agric. Sci. Ser. C 21: 1-109.
12 Arjona-Lopez, J. M. and Lopez-Herrera, C. J. 2020. Control of avocado white root rot using non-pathogenic Rosellinia necatrix isolates combined with low concentration of fluazinam. BioControl 65: 247-255.   DOI
13 Cazorla-Lopez, F. M., Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Biocontrol of white root rot on avocado plants using rhizobacterial strains. IOBC/WPRS Bull. 24: 79-82.
14 Chun, J. and Kim, D.-H. 2021. Co-infection of a novel fusagravirus and a partitivirus in a Korean isolate of Rosellinia necatrix KACC40168. Virus Genes 57: 121-126.   DOI
15 Freeman, S., Sztejnberg, A., Shabi, E. and Katan, J. 1990. Long-term effect of soil solarization for the control of Rosellinia necatrix in apple. Crop Prot. 9: 312-316.   DOI
16 Gonzalez-Sanchez, M. A., Cazorla, F. M., Ramos, C., Vicente, A. and Perez-Jimenez, R. M. 2004. Studies of soil and rhizosphera bacteria to improve biocontrol of avocado white root rot caused by Rosellinia necatrix: management of plant diseases an arthropod pests by BCAs and their integration in agricultural systems. IOBC/WPRS Bull. 27: 169-172.
17 Khan, A. H. 1959. Biology and pathogenicity of Rosellinia necatrix (Hart.) Berl. Biologia 5: 199-245.
18 Eguchi, N., Tokutake, H. and Yamagishi, N. 2008. Hot water treatment of Japanese pear trees is effective against white root rot caused by Rosellinia necatrix Prillieux. J. Gen. Plant Pathol. 74: 382-389.   DOI
19 Kulshrestha, S., Seth, C. A., Sharma, M., Sharma, A., Mahajan, R. and Chauhan, A. 2014. Biology and control of Rosellinia necatrix causing white root rot disease: a review. J. Pure Appl. Microbiol. 8: 1803-1814.
20 Cruz, A. F., de Oliveira Soares, W. R. and Blum, L. E. B. 2014. Impact of the arbuscular mycorrhizal fungi and bacteria on biocontrol of white root rot in fruit seedlings. J. Plant Physiol. Pathol. 2: 1
21 Garcia-Jimenez, J., Busto, J., Vicent, A. and Armengol, J. 2004. Control of Dematophora necatrix on Cyperus esculentus tubers by hot-water treatment. Crop Prot. 23: 619-623.   DOI
22 Golafrouz, H., Safaie, N. and Khelghatibana, F. 2020. The reaction of some apple rootstocks to biocontrol of white root rot Rosellinia necatrix by Trichoderma harzianum in greenhouse. J. Crop Prot. 9: 577-589.
23 Gonzalez-Sanchez, M. A., de Vicente, A., Perez-Garcia, A., Perez-Jimenez, R., Romero, D. and Cazorla, F. M. 2013. Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biol. Control 67: 94-100.   DOI
24 Kanematsu, S., Arakawa, M., Oikawa, Y., Onoue, M., Osaki, H., Nakamura, H. et al. 2004. A reovirus causes hypovirulence of Rosellinia necatrix. Phytopathology 94: 561-568.   DOI
25 Kim, K., Lee, H.-Y., Bae, W., Cho, M. and Ryu, H. 2019. Functional genomic analysis of Bacillus thuringiensis C25 reveals the potential genes regulating antifungal activity against Rosellinia necatrix. Korean J. Mycol. 47: 417-425.   DOI
26 Pal, J., Sharma, S. K., Devi, S., Sharma, R., Raj, H., Karn, M. et al. 2020. Screening, identification, and colonization of fungal root endophytes against Dematophora necatrix: a ubiquitous pathogen of fruit trees. Egypt. J. Biol. Pest Control 30: 112.   DOI
27 Kondo, H., Kanematsu, S. and Suzuki, N. 2013. Viruses of the white root rot fungus, Rosellinia necatrix. Adv. Virus Res. 86: 177-214.   DOI
28 Chiba, S., Salaipeth, L., Lin, Y.-H., Sasaki, A., Kanematsu, S. and Suzuki, N. 2009. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83: 12801-12812.   DOI
29 Arjona-Lopez, J. M., Telengech, P., Suzuki, N. and Lopez-Herrera, C. J. 2020. Coinfection of Rosellinia necatrix by a partitivirus and a virga-like virus is associated with hypovirulence. Eur. J. Plant Pathol. 158: 111-119.   DOI
30 Nayak, S. B., Elango, K., Tamilnayagan, T. and Vinayaka, K. S. 2018. Role of ecological engineering in pest management. In: Applied Entomology and Zoology. Vol. 2, ed. by B. S. Chandel, pp. 1-18. AkiNik Publications, New Delhi, India.
31 Pasini, L., Prodorutti, D., Pastorelli, S. and Pertot, I. 2016. Genetic diversity and biocontrol of Rosellinia necatrix infecting apple in northern Italy. Plant Dis. 100: 444-452.   DOI
32 Perez-Jimenez, R. M. 2006. A review of the biology and pathogenicity of Rosellinia necatrix: the cause of white root rot disease of fruit trees and other plants. J. Phytopathol. 154: 257-266.   DOI
33 Ruano Rosa, D. and Lopez-Herrera, C. J. 2009. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biol. Control 51: 66-71.   DOI
34 Shiragane, H., Usami, T. and Shishido, M. 2019. Weed roots facilitate the spread of Rosellinia necatrix, the causal agent of white root rot. Microbes Environ. 34: 340-343.   DOI
35 Narvaez, I., Pliego Prieto, C., Palomo-Rios, E., Fresta, L., Jimenez-Diaz, R.M., Trapero-Casas, J. L. et al. 2020. Heterologous expression of the AtNPR1 gene in olive and its effects on fungal tolerance. Front. Plant Sci. 11: 308.   DOI
36 Takahashi, M. and Nakamura, H. 2020. Toothpick method to evaluate soil antagonism against the white root rot fungus, Rosellinia necatrix. J. Gen. Plant Pathol. 86: 55-59.   DOI
37 Tienda, S., Vida, C., Lagendijk, E., de Weert, S., Linares, I., GonzalezFernandez, J. et al. 2020. Soil application of a formulated biocontrol rhizobacterium, Pseudomonas chlororaphis PCL1606, induces soil suppressiveness by impacting specific microbial communities. Front. Microbiol. 11: 1874.   DOI
38 Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187.   DOI
39 Sztejnberg, A. and Madar, Z. 1980. Host range of Dematophora necatrix, the cause of white root rot disease in fruit trees. Plant Dis. 64: 662-664.   DOI
40 Arjona-Lopez, J. M., Telengech, P., Suzuki, N. and Lopez-Herrera, C. J. 2021. A moderate level of hypovirulence conferred by a hypovirus in the avocado white root rot fungus, Rosellinia necatrix. Fungal Biol. 125: 69-76.   DOI
41 Sasaki, A., Nakamura, H., Suzuki, N. and Kanematsu, S. 2016. Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res. 219: 73-82.   DOI
42 Cazorla, F. M., Duckett, S. B., Bergstrom, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J. J. et al. 2006. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant-Microbe Interact. 19: 418-428.   DOI
43 Lee, D. H., Lee, S. W., Choi, K. H., Kim, D. A. and Uhm, J. Y. 2006. Survey on the occurrence of apple diseases in Korea from 1992 to 2000. Plant Pathol. J. 22: 375-380.   DOI
44 Lee, D. H. 2002. Etiology and ecology of apple white root rot, caused by Rosellinia necatrix and its biological control. Ph.D. thesis. Kyungpook University, Daegu, Korea.
45 Pliego, C., Kanematsu, S., Ruano-Rosa, D., de Vicente, A., LopezHerrera, C., Cazorla, F. M. et al. 2009. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix. Fungal Genet. Biol. 46: 137-145.   DOI
46 Ruano-Rosa, D., Arjona-Girona, I. and Lopez-Herrera, C. J. 2018. Integrated control of avocado white root rot combining low concentrations of fluazinam and Trichoderma spp. Crop Prot. 112: 363-370.   DOI
47 Sharma, M. and Sharma, S. K. 2002. Effect of soil solarization on soil microflora with special reference to Dematophora necatrix in apple nurseries. Indian Phytopathol. 55: 158-162.
48 Sztejnberg, A., Freeman, S., Chet, I. and Katan, J. 1987. Control of Rosellinia necatrix in soil and in apple orchard by solarization and Trichoderma harzianum. Plant Dis. 71: 365-369.   DOI
49 Takahashi, M., Tsutaki, Y. and Nakamura, H. 2020. Selection of Trichoderma products to enhance the control of loquat white root rot by hot water drip irrigation. J. Gen. Plant Pathol. 86: 419-422.   DOI
50 Ten Hoopen, G. M. and Krauss, U. 2006. Biology and control of Rosellinia bunodes, Rosellinia necatrix and Rosellinia pepo: a review. Crop Prot. 25: 89-107.   DOI
51 Wisler, G. C. and Norris, R. F. 2005. Interactions between weeds and cultivated plants as related to management of plant pathogens. Weed Sci. 53: 914-917.   DOI
52 Yasuda, M and Katoh, K. 1989. Characteristics of bacteria isolated from soil and roots of fruit trees. Soil Sci. Plant Nutr. 35: 501-508.   DOI
53 Pliego, C., Cazorla, F. M., Gonzalez-Sanchez, M. A., Perez-Jimenez, R. M., de Vicente, A. and Ramos, C. 2007. Selection for biocontrol bacteria antagonistic toward Rosellinia necatrix by enrichment of competitive avocado root tip colonizers. Res. Microbiol. 158: 463-470.   DOI
54 Lee, S.-H., Shin, H., Chang, W.-B., Ryu, K.-Y., Kim, H. T., Cha, B. et al. 2020. Dieback reality of apple trees resulting from soil-borne fungal pathogens in South Korea from 2016 to 2019. Res. Plant Dis. 26: 88-94.   DOI