Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.2.170

Production of Surfactin and Iturin by Bacillus licheniformis N1 Responsible for Plant Disease Control Activity  

Kong, Hyun-Gi (Department of Applied Biology, Dong-A University)
Kim, Jin-Cheol (Korea Research Institute of Chemical Technology)
Choi, Gyoung-Ja (Korea Research Institute of Chemical Technology)
Lee, Kwang-Youll (Department of Applied Biology, Dong-A University)
Kim, Hyun-Ju (National Plant Quarantine Service)
Hwang, Eul-Chul (Department of Applied Biology, Dong-A University)
Moon, Byung-Ju (Department of Applied Biology, Dong-A University)
Lee, Seon-Woo (Department of Applied Biology, Dong-A University)
Publication Information
The Plant Pathology Journal / v.26, no.2, 2010 , pp. 170-177 More about this Journal
Abstract
Bacillus licheniformis N1, previously developed as a biofungicide formulation N1E to control gray mold disease of plants, was investigated to study the bacterial traits that may be involved in its biological control activity. Two N1E based formulations, bacterial cell based formulation PN1E and culture supernatant based formulation SN1E, were evaluated for disease control activity against gray mold disease of tomato and strawberry plants. Neither PN1E nor SN1E was as effective as the original formulation N1E. Fractionation of antifungal compounds from the bacterial culture supernatant of B. licheniformis N1 indicated that two different cyclic lipopeptides were responsible for the antimicrobial activity of the N1 strain. These two purified compounds were identified as iturin A and surfactin by HPLC and LCMS. The purified lipopeptides were evaluated for plant disease control activity against seven plant diseases. Crude extracts and purified compounds applied at 500 ${\mu}g/ml$ concentration controlled tomato gray mold, tomato late blight and pepper anthracnose effectively with over 70% disease control value. While iturin showed broad spectrum activity against all tested plant diseases, the control activity by surfactin was limited to tomato gray mold, tomato late blight, and pepper anthracnose. Although antifungal compounds from B. licheniformis N1 exhibited disease control activity, our results suggested that bacterial cells present in the N1E formulation also contribute to the disease control activity together with the antifungal compounds.
Keywords
antifungal activity; Bacillus licheniformis; biofungicide; iturin; surfactin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Mahaffee, W. F. and Backman, P. A. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83:1120-1125.   DOI
2 Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J. and Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67:692-698.   DOI
3 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090.   DOI   ScienceOn
4 Ongena, M. and Jacques, P. 2007. Bacillus lipopeptides: versatile weapons for plant disease control. Trends Microbiol. 16:115-125.   DOI   ScienceOn
5 Peypoux, F., Bonmatin, J.-M. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563.   DOI
6 Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271.   DOI   ScienceOn
7 Stein, T. 2005. Bacillus subtilis an antibiotics: structure, syntheses and specific functions. Mol. Microbiol. 56:845-857.   DOI   ScienceOn
8 Toure, Y., Ongena, M., Jacques, P., Guiro, A. and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96:1151-1160.   DOI   ScienceOn
9 Tsuge, K., Ano, T., Hirai, M., Nakamura, Y. and Shoda, K. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43:2183-2192.
10 Kim, P. I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R. M. and Chi, Y.-T. 2004. Purification and characterizatio of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97:942-949.   DOI   ScienceOn
11 Kinsinger, R. F., Shirk, M. C. and Fall, R. 2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:5627-5631.   DOI
12 Koumoutsi, A., Chen, X-H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borriss, R. 2004. Structural and functional characterization of gene clusters directing nonribiosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186:1084-1096.   DOI
13 Leclère, V., Marti, R., Bechet, M., Fickers, P. and Jacques, P. 2006. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch. Microbiol. 186:475-483.   DOI
14 Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S-W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344-351.   과학기술학회마을   DOI   ScienceOn
15 Handelsman, J. and Stabb, E. V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869.   DOI   ScienceOn
16 Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. W., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evalution of formulations of Baillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37: 329-337.   DOI   ScienceOn
17 Maget-Dana, R., Thimon, L., Peypoux, F. and Ptak, M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047-1051.   DOI   ScienceOn
18 Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G. and Cutler, G. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 36:366-370.   DOI
19 Huszcz, E. and Burczyk, B. 2006. Surfactin isoforms from Bacillus coagulans. Z. Naturforsch. [C] 61:727-733.
20 Jacques, P., Hbid, C., Destain, J., Razafindralambo, H., Paquot, M., De Pauw, E. and Thonart, P. 1999. Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl. Biochem. Biotechnol. 77:223-233.   DOI
21 Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., Kim, D. W., Lee, S-W. and Moon, B. J. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17:438-444.   과학기술학회마을
22 Kim, J-C., Choi, G. J., Kim, H-J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest. Manag. Sci. 60:803-808.
23 Bonmatin, J-M., Laprevote, O. and Peypoux, F. 2003. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen. 6:541-556.   DOI   ScienceOn
24 Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171:1-9.   DOI
25 Fravel, D. R., Connick Jr., W. J. and Lewis, J. A. 1998. Formulation of microorganisms to control plant diseases. In: Formulation of microbial pesticides: Beneficial microorganisms, nematodes and seed treatments, eds by H. D. Burges, pp. 187-202. Kluwer Academic Publishers, Dordrecht, The Netherlands.
26 Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
27 Cho, J-Y., Choi, G. J., Lee, S-W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J-C. 2006. Antifungal activity against Collectotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285.
28 Brannen, P. M. and Kenney, D. S. 1997. Kodiak${\circledR}$-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J. Ind. Microbiol. Biot. 19:169-171.   DOI