Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.05.2019.0154

Characterization of Antibacterial Strains against Kiwifruit Bacterial Canker Pathogen  

Kim, Min-Jung (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
Chae, Dae-Han (Division of Applied Life Science, Gyeongsang National University)
Cho, Gyeongjun (Division of Applied Life Science, Gyeongsang National University)
Kim, Da-Ran (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
Kwak, Youn-Sig (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.35, no.5, 2019 , pp. 473-485 More about this Journal
Abstract
Kiwifruit (Actinidia spp.) is an economically important crop and a bacterial canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the most destructive disease in kiwifruit production. Therefore, prevent and control of the disease is a critical issue in kiwifruit industry worldwide. Unfortunately, there is no reliable control methods have been developed. Recently, interest in disease control using microbial agents is growing. However, kiwifruit microbiota and their roles in the disease control is mainly remaining unknown. In this study, we secured bacterial libraries from kiwifruit ecospheres (rhizosphere, endospere, and phyllosphere) and screened reliable biocontrol strains against Psa. As the results, Streptomyces racemochromogenes W1SF4, Streptomyces sp. W3SF9 and S. parvulus KPB2 were selected as anti-Psa agents from the libraries. The strains showed forcible antibacterial activity as well as exceptional colonization ability on rhizosphere or phyllosphere of kiwifruit. Genome analyses of the strains suggested that the strains may produce several anti-Psa secondary metabolites. Our results will contribute to develop biocontrol strains against the kiwifruit canker pathogen and the disease management strategies.
Keywords
bacterial canker; biological control; kiwifruit; Streptomyces;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, S.-J., Lee, S.-J., Kook, J.-K. and Lim, B.-S. 2009. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater. 25:206-213.   DOI
2 Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M. Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75   DOI
3 Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H. and Baldani, V. L. D. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413-431.   DOI
4 Balestra, G. M., Mazzaglia, A., Quattrucci, A., Renzi, M. and Rossetti, A. 2009. Current status of bacterial canker spread on kiwifruit in Italy. Australas. Plant Dis. Notes 4:34-36.
5 Blin, K., Pascal Andreu, V., de los Santos, E. L. C., Del Carratore, F., Lee, S. Y., Medema, M. H. and Weber, T. 2018. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 47:D625-D630.   DOI
6 Bonanomi, G., Lorito, M., Vinale, F. and Woo, S. L. 2018. Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu. Rev. Phytopathol. 56:1-20.   DOI
7 Bringel, F. and Couee, I. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol. 6:486.   DOI
8 Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E. V. L. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838.   DOI
9 Chebotar, V. K. Malfanova, N. V., Shcherbakov, A. V., Ahtemova, G. A., Borisov, A. Y., Lugtenberg, B. and Tikhonovich, I. A. 2014. Endophytic bacteria in microbial preparations that improve plant development (review). Appl. Biochem. Microbiol. 51:271-277.
10 Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crüsemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129.   DOI
11 Chi, F., Shen, S.-H., Cheng, H.-P., Jing, Y.-X., Yanni, Y. G. and Dazzo, F. B. 2005. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl. Environ. Microbiol. 71:7271-7278.   DOI
12 Colombi, E., Straub, C., Kunzel, S., Templeton, M. D., McCann, H. C. and Rainey, P. B. 2017. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ Microbiol. 19:819-832.   DOI
13 Cwynar, L. C., Burden, E. and McAndrews, J. H. 1979. An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Can J Earth Sci. 16:1115-1120.   DOI
14 De Jong, W., Wosten, H. A. B., Dijkhuizen, L. and Claessen, D. 2009. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73:1128-1140.   DOI
15 Deepthi, M. K., Sudhakar, M. S. and Devamma, M. N. 2012. Isolation and screening of Streptomyces sp. from Coringa mangrove soils for enzyme production and antimicrobial activity. Int. J. Pharm. Chem. Biol. Sci. 2:110-116.
16 Donati, I., Buriani, G., Cellini, A., Mauri, S., Costa, G. and Spinelli, F. 2014. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J Berry Res. 4:53-67.   DOI
17 English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D. M., Reid, J. G., Worley, K. C. and Gibbs, R. A. 2012. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7:e47768.   DOI
18 Fujikawa, T. and Sawada, H. 2016. Genome analysis of the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae biovar 5. Sci. Rep. 6:21399.   DOI
19 Hardoim, P. R., van Overbeek, L. S. and van Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463-471.   DOI
20 Kaur, H., Kaur, J. and Gera, R. 2016. Plant growth promoting rhizobacteria: a boon to agriculture. Int. J. Cell Sci. Biotechnol. 5:17-22.
21 Kim, E., Chang, Y. H., Ko, J. Y. and Jeong, Y. 2013. Quality characteristics of Makgeolli added with kiwifruit (Actinidia deliciosa). J. Korean Soc. Food Sci. Nutr. 42:1821-1828.   DOI
22 Kim, H. S., Han, O. K., Kim, S. C., Kim, M. J. and Kwak, Y.-S. 2017. Screening and investigation Lactobacillus spp. to improve Secale cereale silage quality. Anim. Sci. J. 88:1538-1546.   DOI
23 Kisaki, G., Tanaka, S., Ishihara, A., Igarashi, C., Morimoto, T., Hamano, K., Endo, A., Sugita-Konishi, S., Tabuchi, M., Gomi, K., Ichimura, K., Suezawa, K., Otani, M., Fukuda, T., Manabe, T., Fujimura, T., Kataoka, I. and Akimitsu, K. 2018. Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3. J. Gen. Plant Pathol. 84:399-406.   DOI
24 Louden, B. C., Haarmann, D. and Lynne, A. M. 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12:51-53.   DOI
25 Miyashiro, S., Ando, T., Hirayama, K., Kida, T., Shibai, H., Murai, A., Shiio, T. and Udaka, S. 1983. New streptothricingroup antibiotics, AN-201 I and II. J. Antibiot. 36:1638-1643.   DOI
26 Nakazawa, Y., Sagane, Y., Sakurai, S.-I., Uchino, M., Sato, H., Toeda, K. and Takano, K. 2011. Large-scale production of phospholipase D from Streptomyces racemochromogenes and its application to soybean lecithin modification. Appl. Biochem. Biotechnol. 165:1494-1506.   DOI
27 Ohnishi, S., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A., Hattori, M. and Horinouchi, S. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO13350. J. Bacteriol. 190:4050-4060.   DOI
28 Olano, C., Wilkinson, B., Sanchez, C., Moss, S. J., Sheridan, R., Math, V., Weston, A. J., Brana, A. F., Martin, C. J., Oliynyk, M., Mendez, C., Leadlay, P. F. and Salas, J. A. 2004. Biosynthesis of the angoiogenesis inhibitor borrelidin by Streptomyces parvulus Tu4055: cluster analysis and assignment of function. Chem. Biol. 11:87-97.   DOI
29 Paranthaman, S. and Dharmalingam, K. 2003. Intergeneric conjugation in Streptomyces peucetius and Streptomyces sp. strain C5: chromosomal integration and expression of recombinant plasmids carrying the chiC gene. Appl. Environ. Microbiol. 69:84-91.   DOI
30 Patel, D. and Parmar, P. 2013. Isolation and screening of phosphate solubilizing bacteria from sunflower rhizosphere. Glob. J. Biosci. Biotechnol. 2:438-441.
31 Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17:362-370.
32 Pulsawat, N., Kitani, S. and Nihira, T. 2007. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393:31-42.   DOI
33 Renzi, M., Copini, P., Taddei, A. R., Rossetti, A., Gallipoli, L., Mazzaglia, A. and Balestra, G. M. 2012. Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology 102:827-840.   DOI
34 Sawada, H., Kondo, K. and Nakaune, R. 2016. Novel biovar (biovar 6) of Pseudomonas syringae pv. actinidiae causing bacterial canker of kiwifruit (Actinidia deliciosa) in Japan. Jpn. J. Phytopathol. 82:101-115.   DOI
35 Sebastien, M., Margarita, M.-M. and Haissam, J. M. 2015. Biological control in the microbiome era: challenges and opportunities. Biol. Control 89:98-108.   DOI
36 Stone, B. W. G. and Jackson, C. R. 2016. Biogeographic patterns between bacterial phyllosphere communities of the southern magnolia (Magnolia grandiflora) in a small forest. Microb. Ecol. 71:954-961.   DOI
37 Vacheron, J., Desbrosses, G., Bouffaud, M.-L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dye, F. and Prigent-Combaret, P. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4:356.   DOI
38 Wang, D. S., Xue, Q. H., Zhu, W. J., Zhao, J., Duan, J. L. and Shen, G. H. 2013. Microwave irradiation is a useful tool for improving isolation of Actinomycetes from soil. Microbiology 82:102-110.   DOI
39 Wilson, K. 2001. Preparation of genomic DNA from bacteria. In: Current protocol in molecular biology, ed. by F. M. Ausubel, pp. 2.4.1-2.4.5. Wiley, New York, NJ, USA.
40 Xin, X.-F., Kvitko, B. and He, S. Y. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16:316-328.   DOI
41 Yang, X., Yi, X.-K., Chen, Y., Zhang, A.-F., Zhang, J.-Y., Gao, Z.-H., Qi, Y.-J. and Xu, Y.-L. 2015. Identification of Pseudomonas syringae pv. actinidiae strains causing bacterial canker of kiwifruit in the Anhui province of China, and determination of their streptomycin sensitivities. Genet. Mol. Res. 14:8201-8210.   DOI