• 제목/요약/키워드: control loop design

Search Result 1,372, Processing Time 0.023 seconds

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • This study presents a design method for a single-loop voltage controller that is suitable for an arbitrary waveform generator (AWG). The voltage control algorithm of AWG should ensure high dynamic performance and should attain sufficient robustness to disturbances such as inverter nonlinearity, sensor noise, and load current. By analyzing the power circuit of AWG, control limitation and control target are presented to improve the dynamic performance of AWG. The proposed voltage control algorithm is composed of a single-loop output voltage control, an inverter current feedback term to improve transient response, and a load current feedforward term to prevent voltage distortion. The guideline for setting control gain is presented based on output filter parameters and digital time delay. The performance of the proposed algorithm is proven by experimental results through comparison with the conventional algorithm.

Eigenstructure Assignment Considering Probability of Instability with Flight Control Application

  • Seo, Young-Bong;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.607-613
    • /
    • 2007
  • Eigenstructure assignment provides the advantage of allowing great flexibility in shaping the closed-loop system responses by allowing specification of closed-loop eigenvalues and corresponding eigenvectors. But, the general eigenstructure assignment methodologies cannot guarantee stability robustness to parameter variations of a system. In this paper, we present a novel method that has the capability of exact assignment of an eigenstructure which can consider the probability of instability for LTI (Linear Time-Invariant) systems. The probability of instability of an LTI system is determined by the probability distributions of the closed-loop eigenvalues. The stability region for the system is made probabilistically based upon the Monte Carlo evaluations. The proposed control design method is applied to design a flight control system with probabilistic parameter variations to confirm the usefulness of the method.

A New Loop Shaping Method for Design of Robust Optimal PID Controller (강인한 최적 PID 제어기 설계를 위한 새로운 루프 형성 기법)

  • 윤성오;서병설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1062-1069
    • /
    • 2003
  • This paper presents a new loop shaping technique for design of robust optimal PID controllers in order to satisfy the performance requirements. PID controller can be designed by selecting the suitable weighting factors Q and R. This technique is developed by pushing all two zeros formed by PID controller closely to a larger pole of the second order plant. As a result, a good loop shaping is achieved in the high frequencies region on the Bode plot. For the robust optimal tuning of PID controller for second order system, a new loop shaping procedure is developed via LQR approach.

Design of a Adaptive Code Tracking Loop for GPS L1/L2C/L5 Receivers (GPS L1/L2C/L5 수신기를 위한 적응 코드추적루프 설계)

  • Choi, Heon-Ho;Lim, Deok-Won;Lee, Sang-Uk;Kim, Ji-Hoon;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • In this paper, an adaptive signal tracking loop for a GPS L1/L2C/L5 receiver is designed. The design parameters is adjusted according to the receiver's operating conditions such as the signal strength and the receiver dynamics by using the different characteristics of GPS L1, L2C and L5 signal. Simulation results show that the tracking accuracy of the proposed signal tracking loop is better than those of L1, L2C and L5 only signal tracking loop.

The design of a fuzzy logic controller for the pointing loop of the spin-stabilized platform (자전 안정화 플랫트폼 위치제어용 퍼지 논리 제어기 설계)

  • 유인억;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.112-116
    • /
    • 1992
  • In this paper, a fuzzy logic controller(FLC) is designed for the pointing loop of the spin-stabilized platform. For the fuzzy inference, a fuzzy accelerator board using the Togai InfraLogic software and digital fuzzy processor(DFP110FC) is designed, and a validation of an algorithm for fuzzy logic control is also presented. The pointing loop of the spin-stabilized platform using FLC has better performance of step responses than a proportional controller in case of same loop hain through the software simulation and the experiment of implemented hardware.

  • PDF

Direct Digital Control of Single-Phase AC/DC PWM Converter System

  • Kim, Young-Chol;Jin, Lihua;Lee, Jin-Mok;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.518-527
    • /
    • 2010
  • This paper presents a new technique for directly designing a linear digital controller for a single-phase pulse width modulation (PWM) converter systems, based on closed-loop identification. The design procedure consists of three steps. First, obtain a digital current controller for the inner loop system by using the error space approach, so that the power factor of the supply is close to one. The outer loop is composed of a voltage controller, a current control loop including a current controller, a PWM converter, and a capacitor. Then, all the components, except the voltage controller, are identified by a discrete-time equivalent linear model, using the closed-loop output error (CLOE) method. Based on this equivalent model, a proper digital voltage controller is then directly designed. It is shown through PSim simulations and experimental results that the proposed method is useful for the practical design of PWM converter controllers.

Implementation of binary position controller with continuous inertial external loop for BLDC motor (브러시 없는 직류전동기를 위한 연속관성형 외부루프를 갖는 바이너리제어기의 구현)

  • 김영조;김영석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.60-66
    • /
    • 1996
  • Brushless DC(BLDC) motor have been increasingly used in machine tools and robotics applications due to the reliability and the efficiency. In control of BLDC motor, it is important to construct the controller which is robust to parameter variations and external disturbances. Variable structure controller(VSC) has been known as a powerful tool in robust control of time varying systems. In practical systems, however, VSC has a high frequency chattering which deteriorates system performances. In this paper, a binary controller(BC) which takes the form of VSC and MRAC combined is presented to solve this problem. BC consists of the primary loop controller and the external loop controller to change the gain of primary loop controller smoothly. So it can generate the continuous control input and is insensitive to parameter variations in the given domain. To confirm the validity, various investigations of control characteristics for various design parameters in a position control system of BLDC motor are carried out. (author). 11 refs., 18 figs., 1 tab.

  • PDF

Design of Interleaved Boost Power Factor Preregulator (Interleaved 승압형 역률 전치보상 컨버터의 설계)

  • Heo, T.W.;Noh, T.G.;Jung, J.R.;Ahn, I.M.;Son, Y.D.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1123-1125
    • /
    • 2002
  • In this paper, interleaved boost converter is applied as a pre-regulator in switch mode power supply. Interleaved Boost Power Factor Preregulator (IBPFP) can reduce input current ripple as a simple voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. IBPFP can be classified as three cases from duty ratio condition in continuous current mode and be carried out state space averaging small signal modeling. According to modeling, the PID controller is applied and voltage control loop is constructed for suitable design condition. From frequency domain analysis, it is verified that control system is satisfied with design condition of switch mode power supply.

  • PDF

Decoupled Controller Design of Small Autonomous Underwater Vehicle and Performance Test using HILS (소형 자율 수중 운동체의 비연성 제어기 설계 및 HILS 기법을 이용한 성능 평가)

  • Chul, Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.130-137
    • /
    • 2013
  • In this paper, decoupled controller design for Autonomous Underwater Vehicle(AUV) and its simulated performance test results and Hardware In the Loop Simulation(HILS) results are presented. Control system design is done using the PD control scheme. Stability analysis and step response of closed loop system under uncertain parameter condition are also presented. The results of full coupled nonlinear model simulation show the well applicability of the designed controller. From the results of HILS, we can verify performance of real time processing and implemented hardware for AUV.

Dynamic Analysis and Control-Loop Design of ZVS-FB PWM DC/DC Converter for High-Power Applications (대용량 ZVS-FB PWM DC/DC 변환기의 제어 루프 설계와 동특성 해석)

  • Yoon, Kil-Moon;Baek, Ju-Won;Cha, Young-Kil;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2023-2027
    • /
    • 1997
  • This paper presents the dynamic analysis and control-loop design of a zero-voltage-switched full bridge (ZVS-FB) PWM dc/dc converter. Based on the small-signal analysis results, the control-loop is designed using a simple two-pole one-zero compensation circuit. Design results are verified by both computer simulations and experimental data obtained from a 2kW prototype converter.

  • PDF