• Title/Summary/Keyword: contact metric manifold

Search Result 42, Processing Time 0.022 seconds

ON COMPACT GENERIC SUBMANIFOLDS IN A SASAKIAN SPACE FORM

  • SUNG-BAIK LEE;NAM-GIL KIM;SEUNG-GOOK HAN;IN-YEONG YOO
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.401-409
    • /
    • 1994
  • One of typical submanifolds of a Sasakian manifold is the so-called generic submanifolds which are defined as follows: Let M be a submanifold of a Sasakian manifold M with almost contact metric structure (ø, G, ξ) such that M is tangent to the structure vector ξ. If each normal space is mapped into the tangent space under the action of ø, M is called a generic submanifold of M [2], [8].(omitted)

  • PDF

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.547-554
    • /
    • 2021
  • The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.

A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.669-682
    • /
    • 2019
  • The objective of this paper is to introduce and study Einstein-like para-Kenmotsu manifolds. For a para-Kenmotsu manifold to be Einstein-like, a necessary and sufficient condition in terms of its curvature tensor is obtained. We also obtain the scalar curvature of an Einstein-like para-Kenmotsu manifold. A necessary and sufficient condition for an almost para-contact metric hypersurface of a locally product Riemannian manifold to be para-Kenmotsu is derived and it is shown that the para-Kenmotsu hypersurface of a locally product Riemannian manifold of almost constant curvature is always Einstein.

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

ON GENERIC SUBMANIFOLDS OF MANIFOLDS EQUIPPED WITH A HYPERCOSYMPLECTIC 3-STRUCTURE

  • Kim Jeong-Sik;Choi Jae-Dong;Tripathi Mukut Mani
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.321-335
    • /
    • 2006
  • Generic submanifolds of a Riemannian manifold endowed with a hypercosymplectic 3-structure are studied. Integrability conditions for certain distributions on the generic submanifold are discussed. Geometry of leaves of certain distributions are also studied.