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SOME REMARKS FOR THE SPECTRUM OF THE
p~LAPLACIAN ON SASAKIAN MANIFOLDS

TAE Ho KANG AND JIN SUuK PAK

1. Introduction

Let (M, g) be a compact manifold of dimension n with metric tensor
g- Let AP = dé + éd be the Laplace-Beltrami operator acting on the
space of smooth p-forms. Then we have the spectrum of A? for each
0<p<n

SpeCP(Mag) = {O S /\l,p S A?,p e T +OO},

where each eigenvalue is repeated according to its multiplicity. Many
authors have studied the relationship between the spectrum of M and
the geometry of M. And also, Z.0Olszak{ 1 |, J.S.Pak, J.C.Jeong and

W.T.Kim[2], S.Yamaguchi and G.Chiiman[ 7 | and others studied the
spectrum of Sasakian manifolds. In this paper we shall prove ;

THEOREM A. Let M = (M, ¢,€,n,9) and M' = (M’',¢',¢',7',g")
be compact c-Einstein Sasakian manifolds with Spec? M = Spec? M’
for an arbitrary fixed p > 1 (which implies dimM =dimM'=n). If
(n,p) ¢ {(15,1),(15,2),(15,13),(15,14)}, then M is of constant ¢-
sectional curvature ¢ if and only if M' is of constant ¢'-sectional cur-
vature c' =c.
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THEOREM B. Let M = (M, ¢,€,7,9) and M' = (M',¢",€,n,9)
be compact Sasakian manifolds with Spec?’{M) = SpecP(M')(which
implies dimM =dimM'=n). If n is given, there exists an integer p(0 <
p < n) such that M is of constant ¢- sectional curvature ¢ if and only
if M' is of constant ¢'- sectional curvature ¢ = ¢'.

2. Preliminaries

By R = (R}y),p = (Rjx) = (R})y) and 0 = (¢’*Rji) we de-
note the Riemannian curvature tensor, the Ricci tenscr and the scalar
curvature, respectively, and ¢ = (gi;) is a Riemannian metric ten-
sor on M, (¢"7) = (gi;)™"'. For the tensor field T on M we denote
|T'| the norm of T with respect to g. Then for each p < 2m +
1(=dimM) the Minakshisundaram-Pleijel-Gaffney asymptotic expan-
sion for Spec?(M, g) is given by

oo
_2zmd4l )
S eap(—hapt) = (476) F fag, + tarp + o+ tVan,)
a=0
+o(tNTmrE)  as ¢ 0,
where ag,p,a1,,02,p, - are numbers which can be expressed by ( see

[3])

om + 1
(2.1) a0, = ( mt )/ dM,
p M

D917 —
(2.2) a1y = 1 [(2m+ 1) _6(um 1>] / odM,
6 P p-1 M

on =5 [ o) () ()

(2.3) + {-2(2"’: l) +180 (2;”:]]) - 720(2:_'23) } o]
+ {2(2’": 1) - 30 (2;"_"]1) +180 (2;"_—2") } |R|?] dM,

where dM denotes the volume element of M, and (i) =0for k <0or
r < 0.
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Let M = (M, ¢,£,m,9) be a compact Sasakian manifold (cf. |
8 ]). This means that M is a (2m + 1)-dimensional compact differ-
entiable manifold with a normal contact metric structure (¢,€,7,9),
where ¢ = (¢7),€ = (¢'),n = (1) are tensor fields of type (1,1), (1,0),
(0,1) respectively.
Now we introduce the tensor fields H = (Hijin) and @ = (Q;;) on
M defined by

c+3 c—1
Hyjin = Rijin — T(gkhg]’i ~ gkigsh) = “‘T(¢kh¢ji — PriPjn

- 2¢kj¢ih = gk + kiR — G5NkTR + gthlkUz'),

Qij = Rij — agi; — byin;,

where ¢ = U;T(nn(fil;)_l),a:%—l and b=2m+1———2%.
Then we have
(2.4)
4 1 1
lH[2=|R|2“ 2 2 (3m+1)g_4m(2m+ )(3m + )’
m(m + 1) m+1 m+1

1 . .
(2.5) 10 = 1p|® - 2—02 + 20 — 2m(2m + 1).

m

A Sasakian manifold M = (M, $,&,n,g) is called a space of constant
¢-sectional curvature c(resp.c-Einstein) if H(resp.Q)) vanishes identi-
cally. It is well known that a space of constant ¢-sectional curvature
is c-Einstein. For any ¢-Einstein manifold of dimension > 5, the scalar
curvature is necessarily constant. A 3-dimensional c-Einstein manifold
means that the scalar curvature is constant. On any 3-dimensional
Sasakian manifold the tensor field H vanishes, but in this case the
scalar curvature may be non-constant. Therefore, in dimension 3, it is
of constant ¢-sectional curvature if and only if o is constant.

We also consider the so-called contact Bochner curvature tensor
ﬁeld B = (Bkjih) defined on M by (Cf.[1,7])

Bijin = Rijin — (9knBji — griByn — g5nRii + 95 Ren

2m + 4
— ¢xnRj10} + SriRj1dh — b;:Rridh + b1 Ruidh
+ 26x; Ritdh, + 26in Ruuds — Rennini + Riinini
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— Rjimenn + Rjnneni) + (gkhgﬁ — Gk:iGjn)

2m + 4
r -+ 2m
+ S 4(¢kh¢]1 — Pridjn — 20kjdin)
r
T 4(gkhflj77i — GkiTNh + 95iNkNR — G5RNETE ),
where r = ot 2m. Then we also obtain
2m + 2
(2.6)
8 92
|B|> = |Rf - —lpl + 2

(m+ 1) (m + 2)0

4(3m? +3m - 2) 2 ) 8(13m + 14)
(m+1)(m+2)0 24m” + 36m 56+tm+1)(m+2)'

Moreover, it may be easily seen that H =0 if and onlyif B =0
and @ =0. From (2.4)~(2.6), we have

2 1(3m+1)
R’ = |B} + —_— e 2y
2.7) 7] Bl |Ql m(m+1) (m+1)
8 _ _
+ 24m? — 36m + 56 + (4m? —2m 7).
m+1
For p ¢ {1,2,3,2m,2m + 1}, substituting (2.7) into (2.3) yields
wy=a [ [4RIBF + = PIQf %
(2:8) 16 16 e
m
— Ps | dM,
+m+1 7 m—+1 5]d
where

Py := Py(m,p) = 8m* — (60p + 81m® + (210p* — 120p — 2)m?
+ (—180p® + 225p% — T5p + 2)m
+ 45p* — 90p* + 60p* — 15p,

Py := Py(m,p) = —4m® + (180p + 28)m™* — (450p° - 300p + 23)m°
+ (360p* — 465p* + 15p — T)m?
— (90p* — 180p® + 45p* — 15p — 6)m — 30p* + 30p,
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Py := Py(m,p) = 20m® — (120p + 4)m® + (240p* — 9)m*
— (180p° + 30p® — 120p + 11)m?
+ (45p* + 90p® — 180p% — 15p + 1)m?
— (45p* — 90p° + 15p° — 3)m — 15p* + 15p,
<2m - 3)
-— p — 2
" 360p(p — 1)(2m — p + 1)(2m — p)°

Py and P; are also constant depending only on m and D.
For p € {1,2,3,2m,2m + 1}, the formula (2.3) is of the form

H

3 9 8 2 _‘_l___ wr?
(29) a2,p_ﬂv/1’w[4QllBl +m+2Q2|QI +7n(nl+1)Q30

16 16m
M,
m+1Q40'+ m+1Q5](
where for : = 1,2,3,4,5
(1)if p=1,m > 2, then

P,-(m, 1)

1
F= 360’ Qi = Qui(m) = 2m(2m — 1)(2m — 2)’

1 4
while for (m,p) =(1,1), @, =-6,Q, = Zo,Qg =9,
(i1) if p=2,m > 2, then
1 P;(m,2
IB i 2 % 3603 Ql had Q‘l(m)

(2m - 1)(2m - 2’

165
while for (m,p) = (1,2), Q,=-12,Q, = —S__’QB — 18,
(i) if p = 3,m > 2, then -

_ 1 O () = P;(m, 3)
'B_6><360’ @i = Qilm) =

2m -2

1
while for (m,p) = (1,3), @Q;=3,Q; = ‘:?,Qz = 18,
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(iv) if p = 2m,m > 2, then

1 Pi(m,2m)

B==, Qi=Qim)=

(V)if p=2m+1,m > 2, then

1 , P;(m,2m + 1)

2m(2m — 1)(2m -- 2)’

,8:%6, Qi = Qi(m) =

REMARK 1. The signs of the coefficients of ]B|2, QI

(2m + 1)(2m)(2m — 1)(2m — 2)’

and o?inthe

formulae (2.8) and (2.9) are respectivelv determined by the polynomials

Py, P, and P3 when (m,p) # (1,1),(1,2),(1,3).

REMARK 2. In the following table we list some particular values of

m for p < 100.

P | the values of m such that P;. P», P; >0
1 |[851]

2 | [2,4] 6 [8,93]

3 | [2,6] [9,136]

4 | [3,8] [12,178]

5 |[210]  [14,221]

6 | [4,12] [17,263]

7 |[3.14] (19,305]

8 | [5,16]  [22,348]

9 |4 [6.19] {25,390]

10 |[6,9 [11,21] [27,433]

20 | [10,11] [13,17] [24,43] [52,857]

30 | [1517] [19.25] [36,66] [77,1281]
40 |[20,23] [26,33] [49,89]  [101,1705]
50 | [25,30] [3241] [62,112)  [126,2129]
60 |[30,36] [39,50] [75,135]  [150,2553]
70 | [35.42] [4558] [87.158]  [174,2976]
80 | [40,48] [52,181]  [198,3400]

90 | [280,3824]

100 | [300,4248)

We obtain all the values found in [1.7] when p =1, 2.
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From now on we shall write (2.8) and (2.9) in the following form :

4
= 4R,|B|? R2|Q” + ——— R30?
01 7/M[ I R
| b0 + 28 Ry am
m+1 o m+1 5

where 7 is either a or 3, and R; is either P; or Q; (i=1,2,3,4,5).

2m - 1) = () does not
p—1

admit the natural roots, In fact, 2m + 1) — 6(2m ‘11> =0 ifand
p p-

only if m(2m+1) - 3p(2ni —p+1)=0 ifandonlyif m=
-2 ~1
- P = e + v, where u? — 12v% = 1. Therefore m can not be a

REMARK 3. The equation (2m + 1) — 6(
p

natural number, because u is an odd number.

REMARK 4. Let M = (M,4,£,n,9) and M' = (M',¢'.¢.9',4")
be compact Sasakian manifolds with Spec?(M) = Spec?(M') for an
arbitrary fixed p > 1. Then for any m € N(2m + 1 > p) such that
the polynomials Ry, R, and Rj; are strictly positive(for example, some
particular values listed in Remark 2), M is of constant ¢-sectional
curvature ¢ if and only if M’ is of constant ¢'-sectional curvature ¢ = ¢'.

Proof. Assume that M’ has constant ¢'-sectional curvature ¢’. Then
our assumption Spec?(M) = Spec?(M') and Remark 3 imply

4
m(m + 1)

/[4R1|B|2+ S RQP + Ryo?| dM
M

4+ 2
(2.11) - mE
=y mm e

On the other hand

/ oldM > / o dM,
M M!

because [, 0dM = [, 0'dM' 0" = constant, Sy dM = [, dM'.
Hence from (2.11) we obtain B = 0 = Q. Q.E.D.
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3. Proof of Theorems

Proof of Theorem A. If M and M’ are c-Einstein manifolds, then
@ =0=Q', and 0,0’ are constants. By Remark 3 and (2.2), we have
o = o'. The assumption Spec?(M) = Spec?(M') implies

/ 4R |BI’dM = | 4R,|B'|*dM’
M M

But for (n,p) ¢ {(15,1),(15,2),(15.13),(15,14)}, B1 # 0 (cf. The-
orem 3.1(i) in [ 4 ]). Hence B = 0 if and only if B’ = (). Q.E.D.

Let S™ be an odd dimensional unit sphere with constant curvature 1.
Then § = (5™, ¢,€,7,§) admits a Sasakian structure (¢, €, 7, §) which
is called a natural Sasakian structure on S™. Using our THEOREM A,
Remark 4 and Theorem 2(] 5 |), we can deduce the characterization.

COROLLARY. Let M = (M, ¢,£,n,q) be a compact Sasakian mani-
fold with SpecP(M) = Spec?(S) for a given p > 1. If (i) the functions
Ry, R3, Ry are strictly positive, or (ii) M is c-Einstein and (n,p) ¢
{(15,1),(15,2),(15,13),(15,14)}, then M is isomorphic to S, that is,
there is an isometry f : (M,g) — (S”.g) such that f,£ =&, f*n =1
and f*oc;S:d;of*.

Proof of Theorem B. By Remark 1, for (mn,p) ¢ (1,11,(1,2),(1,3), it
is sufficient to show that there exists an integer p such that Py, Py, P3 >
0. This can be done as follows (2m + 1 =: n);

Ifn=3,57911, we choose p=0([1,7]). fn = 13,17 < n < 187,
we choose p = 2 (Remark 2). If n = 15, we choose p = 4 (Remark
2 ¥n>47n=16k-1 or 16k+1 or 16k+3 or 16k +
9 or 16k+7 or 16k+9 or 16k+11 or 15k+13(k > 3)),
we always choose p = k.

To see the last statement, we calculated the following polynomials
Py, P,, P;, which can be obtained from (2.3) with 2m -~ 1 =: n.

j’;(n,p) = 4P (m,p) = 2n{n — 1)(n — 2}(n — 3)
- 30(n - 2)(n — 3)p(n -- p)
+ 180p(p — 1)(n — p)(n —p — 1),
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Fz(n,p) = 8P(m,p) = —n(n—-1)(n—-2)(n—-3)(n+3)
+90(n = 2)(n = 3)(n + 3)(n — p)p
—360p(p — 1)(n - p)(n —p—1)(n +3)
+ 16n(n — 1)(n — 2)(n — 3)
- 240p(n — p)(n - 2)(n — 3)
+ 1440p(p — 1)(n — p)(n — p — 1),

Py(n, p) = 16P3(m, p)
= 5(n + )n(n — 1)*(n — 2)(n — 3)
= 60(n +1)(n — 1)(n — 2)(n — 3)p(n — p)
+180p(p — 1)(n — p — 1)(n-—p)(n — 1)(n + 1)
+ 16n(n — 1)(n — 2)(n — 3) — 240(n - 2)(n — 3)p(n — p)
+1440p(p — 1)(n — p — 1)(n — p)
—2(n+ 1)n(n—1)(n - 2)(n — 3)
+ 180(n + 1)(n — 2)(n — 3)p(n — p)
—720p(p — 1)(n ~p — V(n—p)(n+1). Q.E.D.
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