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Abstract. We set our target to investigate Yamabe solitons, gradient Yamabe solitons and

gradient Einstein solitons within the structure of 3-dimensional non-cosymplectic normal

almost contact metric manifolds. Also, we provide a nontrivial example and validate a

result of our paper.

1. Introduction

In [8], Hamilton introduced the notion of Yamabe solitons. According to the
author, a Riemannian metric g of a complete Riemannian manifold (Mn, g) is called
a Yamabe soliton if it satisfies

(1.1)
1

2
£W g = (λ− r)g,

where W , λ, r and £ denotes a smooth vector field, a real number, the scalar
curvature and Lie-derivative respectively. The vector fieldW is said to be the soliton
field of the Yamabe solitons. If W is the gradient of a C∞ function f : Mn → R,
then the manifold will be called gradient yamabe soliton. In this occasion, the
previous equation reduces to

(1.2) ∇2f = (λ− r)g,

where ∇2f indicates the Hessian of f . A Yamabe soliton is said to be shrinking,
steady or expanding according to λ > 0, λ = 0 or λ < 0, respectively. Yamabe
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solitons have been investigated by many researchers in different context (see, [1],[4],
[5], [6]).

The concept of the Gradient Einstein solitons was initiated by Catino and
Mazzieri [3]. For some smooth function f and some constant λ ∈ R, the Gradient

Einstein solitons are Riemannian manifolds obeying

(1.3) S −
1

2
rg +∇2f = λg,

where S denotes the Ricci tensor.

Many years ago in [10], Olszak investigated the 3-dimensional normal almost
contact metric(briefly, acm) manifolds mentioning several examples. After the ci-
tation of [10], in recent years normal acm manifolds have been studied by many
researchers in different context (see, [7],[10] and references contained in those).

The present article is constructed as follows:

In section 2, we recall a few basic facts and formulas of 3-dimensional non-
cosymplectic normal acm manifolds which will be needed throughout the article.
In section 3, we investigate the Yamabe, gradient Yamabe and gradient Einstein
solitons. Specifically, we establish the below stated Theorems:

Theorem 1.1.If a 3-dimensional non-cosymplectic normal acm manifold admits a
Yamabe soliton of the type (M3, g, ξ), then the scalar curvature is constant and the
characteristic vector field ξ is Killing.

Theorem 1.2. If a 3-dimensional non-cosymplectic normal acm manifold M3

admits a Yamabe soliton of the type (M3, g,W ), then either the manifold is quasi-
Sasakian or the scalar curvature of the manifold is constant and the soliton vector
field W is Killing provided α, β are constants and the scalar curvature r is invariant
under the characteristic vector field ξ.

Theorem 1.3. Let the Riemannian metric of a 3-dimensional non-cosymplectic
normal acm manifold with α, β =constant be the gradient Yamabe soliton. Then
either the manifold is of constant sectional curvature −(α2 − β2) or the manifold is
α-Kenmotsu, provided the gradient yamabe soliton is trivial.

Theorem 1.4. Let the Riemannian metric of a 3-dimensional non-cosymplectic
normal acm manifold with α, β =constant and α 6= ±β be the gradient Einstein
metric. Then either the manifold is α-Kenmotsu or is a manifold of constant sec-
tional curvature.

2. Preliminaries

Let M3 be an acm manifold endowed with a triplet of almost contact
structure(η, ξ, φ). In details, M3 is an odd-dimensional differentiable manifold
equipped with a global 1-form η, a unique characteristic vector field ξ and a (1, 1)-
type tensor field φ, respectively, such that

(2.1) φ2E = −E + η(E)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0.
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An almost complex structure J on M × R is defined by

(2.2) J(E, λ
d

dt
) = (φE − λξ, η(X)

d

dt
),

where (E, λ d
dt
) denotes a tangent vector on M ×R, E and λ d

dt
being tangent to M

and R respectively. After fulfilling the condition, the structure J is integrable, M
and (φ, ξ, η) are called normal (see, [2]).
The Nijenhuis torsion is defined by

[φ, φ](E,F ) = φ2[E,F ] + [φE, φF ]− φ[φE, F ]− φ[E, φF ].

The structure (η, ξ, φ) is said to be normal if and only if

(2.3) [φ, φ] + 2dη ⊗ ξ = 0.

A Riemannian metric g on M3 is called compatible with the structure (η, ξ, φ) if
the condition

(2.4) g(φE, φF ) = g(E,F )− η(E)η(F ),

holds for any E,F ∈ χ(M). In such case, the quadruple (η, ξ, φ, g) is termed as an
acm structure on M3 and M3 is an acm manifold. The equation

(2.5) η(E) = g(E, ξ),

is also valid on such a manifold.
Certainly, we can define the fundamental 2-form Φ by

(2.6) Φ(F,Z) = g(F, φZ),

where F,Z ∈ χ(M).
For a normal acm, we can write [10]:

(2.7) (∇Eφ)(F ) = g(φ∇Eξ, F )− η(F )φ∇Eξ,

(2.8) ∇Eξ = α[E − η(E)ξ] − βφE,

(2.9) (∇Eη)(F ) = αg(φE, φF ) − βg(φE, F ),

where 2α = divξ and 2β = tr(φ∇ξ), divξ is the divergent of ξ defined by divξ =
trace{E −→ ∇Eξ} and tr(φ∇ξ) = trace{E −→ φ∇Eξ}. Utilizing (2.8) in (2.7) we
lead

(2.10) (∇Eφ)(F ) = α[g(φE, F )ξ − η(F )φE] + β[g(E,F )ξ − η(F )E].
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Also in this manifold the subsequent relations hold [10]:

R(E,F )ξ = [Fα+ (α2 − β2)η(F )]φ2E

−[Eα+ (α2 − β2)η(E)]φ2F(2.11)

+[Fβ + 2αβη(F )]φE

−[Eβ + 2αβη(E)]φF,

S(E, ξ) = −Eα− (φE)β(2.12)

−[ξα+ 2(α2 − β2)]η(E),

(2.13) ξβ + 2αβ = 0.

(2.14) (∇Eη)(F ) = αg(φE, φF ) − βg(φE, F ).

It is well admitted that the Riemann curvature tensor always satisfies

R(E,F )Z = S(F,Z)E − S(E,Z)F + g(F,Z)QE − g(E,Z)QF(2.15)

−
r

2
[g(F,Z)E − g(E,Z)F ].

By (2.11), (2.12) and (2.15) we infer

S(F,Z) = (
r

2
+ ξα+ α2 − β2)g(φF, φZ)

−η(F )(Zα+ (φZ)β) − η(Z)(Fα+ (φF )β)(2.16)

−2(α2 − β2)η(F )η(Z).

From (2.10) it follows that if α, β =constant, then the manifold is either α-Kenmotsu
[9] or cosymplectic [2]or β-Sasakian. Also, it is well known that a 3-dimensional
normal almost contact manifold reduces to a quasi-Sasakian manifold if and only if
α = 0 (see, [10]).

Now before producing the detailed proof of our main theorems, we first prove
the following results:
Lemma 2.1. For a 3-dimensional non-cosymplectic normal acm manifold with

α, β =constant, we have

(∇EQ)ξ = −{
r

2
+ 3(α2 − β2)}[α{E − η(E)ξ} − βφE].(2.17)
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Proof. For α, β =constants, we get from (2.16)

(2.18) QF = {
r

2
+ (α2 − β2)}F − {

r

2
+ 3(α2 − β2)}η(F )ξ.

Differentiating (2.18) covariantly in the direction of E and using (2.8) and (2.14),
we get

(∇EQ)F =
dr(E)

2
(F − η(F )ξ)(2.19)

−{
r

2
+ 3(α2 − β2)}[αg(E,F )ξ − 2αη(E)η(F )ξ

+αη(F )E − βg(φE, F )ξ − βη(F )φE].

Replacing F by ξ in (2.19) and using (2.8), we obtain

(∇EQ)ξ = −{
r

2
+ 3(α2 − β2)}[α{E − η(E)ξ} − βφE].

Lemma 2.2. Let M3(η, ξ, φ, g) be a non-cosymplectic normal acm manifold with

α, β =constant. Then we have

ξr = −4α{
r

2
+ 3(α2 − β2)}(2.20)

Proof. Recalling (2.19), we can write

g((∇EQ)F,Z) =
dr(E)

2
[g(F,Z)− η(F )η(Z)]

−{
r

2
+ 3(α2 − β2)}[αg(E,F )η(Z)− 2αη(E)η(F )η(Z)

+αη(F )g(E,Z)− βg(φE, F )η(Z)− βη(F )g(φE,Z)].(2.21)

Putting E = Z = ei (where {ei} is an orthonormal basis for the tangent space of
M and taking

∑
i, 1 ≤ i ≤ 3 ) in the foregoing equation and using the so called

formula of Riemannian manifolds divQ = 1
2grad r, we obtain

(ξr)η(F ) = −4α{
r

2
+ 3(α2 − β2)}η(F ).(2.22)

Superseding F = ξ in the previous equation we have the required result.

Definition 2.1. A vector field W on an n dimensional Riemannian manifold (M, g)
is said to be conformal if

(2.23) £W g = 2ρg,
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ρ being the conformal coefficient. If the conformal coefficient is zero then the con-
formal vector field is a Killing vector field.

Lemma 2.3. [12] On an n-dimensional Riemannian or, Pseudo-Riemannian man-

ifold (Mn, g) endowed with a conformal vector field W , the following relations are

satisfied:

(£WS)(E,F ) = −(n− 2)g(∇EDρ, F ) + (∆ρ)g(E,F ),

£W r = −2ρr + 2(n− 1)∆ρ

for E,F ∈ χ(M), D being the gradient operator and ∆ = −divD being the Laplacian

operator of g.

3. Proof of The Main Theorems

Proof of Theorem 1.1. Let a normal acm manifold M3 admits a Yamabe soliton
of the type (g, ξ). Then superseding W = ξ in (1.1) yields

(3.1) (£ξg)(E,F ) = (λ− r)g(E,F ).

In view of (2.8), (3.1) becomes

(3.2) (2α− λ+ r)g(E,F )− 2αη(E)η(F ) = 0.

Superseding E = F = ξ in (3.2) and using (2.1), we have

(3.3) r = λ.

Therefore the scalar curvature r is constant. Putting λ = r in (3.1) yields £ξg = 0
i.e., ξ is Killing vector field. Hence the theorem. 2

Proof of Theorem 1.2. Let M3 be a normal acm manifold with the structure
which endowed the Yamabe soliton (g,W ).

Taking Lie differential of g(ξ, ξ) = 1 along the soliton vector field V and making
use of (1.1) yields

(3.4) η(£V ξ) = −(£V η)(ξ) =
r − λ

2
.

Again, in view of (1.1) and (2.23) it is obvious that the soliton vector field W

is conformal with the conformal coefficient ρ = λ−r
2 . As we consider the metric g

of the 3-dimensional normal acm manifold M is a Yamabe soliton, using ρ = λ−r
2

and n = 3 in Lemma 2.3, we have

(3.5) (£WS)(E,F ) =
1

2
g(∇EDr, F )−

1

2
(∆r)g(E,F ),
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and

(3.6) £W r = r(r − λ)− 2∆r.

Here we consider α, β are constants. So from (2.16), we have

(3.7) S(E,F ) = [
r

2
+ α2 − β2]g(E,F )− [

r

2
+ 3(α2 − β2)]η(E)η(F ).

Taking Lie differentiation of (3.7) along W and making use of (1.1) and (2.10),
we obtain

(£WS)(E,F ) = −(∆r)g(E,F ) + (λ− r)(α2 − β2)g(E,F )(3.8)

−{
r(r − λ)

2
−∆r}η(E)η(F )

−{
r

2
+ 3(α2 − β2)}{(£W η)(E)η(F )

+η(E)(£W η)(F )}.

Making use of (3.5) in (3.8), we acquire

g(∇EDr, F ) = {2(α2 − β2)(λ − r)−∆r}g(E,F )(3.9)

+{r(λ− r)− 2∆r}η(E)η(F )

−{r + 6(α2 − β2)}{(£W η)(E)η(F )

+η(E)(£W η)(F )}.

Replacing E = F = ξ in (3.9) and using of (2.1) and (3.4), we obtain

(3.10) ξ(ξr) = ∆r − 4(α2 − β2)(λ − r).

Let r is invariant under the characteristic vector field ξ. Then either α = 0 or
r =constant. Thus we conclude that either the manifold is quasi-Sasakian or using
r =constant in (3.10), we have λ− r = 0. Hence (1.1) immediately yields £W g = 0,
i.e., the soliton vector field W is Killing. This completes the proof. 2

If α = 0 and β = 1, then the manifold reduces to a 3-dimensional Sasakian
manifold. Since the characteristic vector field ξ is Killing in a Sasakian manifold,
therefore ξr = 0. Hence from the above theorem we can state the following:

Corollary 3.1. If a three dimensional Sasakian manifold admits a Yamabe soliton,

then the scalar curvature of the manifold is constant and the soliton vector field W

is Killing.
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The foregoing Corollary was established by Sharma in [11].

Proof of Theorem 1.3. Let us consider a gradient Yamabe soliton on a 3-
dimensional non-cosymplectic normal acm manifold with α, β =constant. Then
from (1.2) we obtain

(3.11) ∇EDf = (λ− r)E,

from which we acquire

(3.12) R(E,F )Df = dr(E)F − dr(F )E.

Contraction of previous equation along F yields

(3.13) S(E,Df) = 2dr(E).

Now, the equation (2.16) gives

(3.14) S(E,Df) = {
r

2
+ (α2 − β2)}(Ef)− {

r

2
+ 3(α2 − β2)}η(E)(ξf).

Equation (3.13) and (3.14) together reveal that

(3.15) 2dr(E) = {
r

2
+ (α2 − β2)}(Ef)− {

r

2
+ 3(α2 − β2)}η(E)(ξf).

Putting E = ξ and using (2.20), we get

(3.16) (ξf) =
4α

α2 − β2
{
r

2
+ 3(α2 − β2)}.

Hence, using (3.16) in (3.15), we have

(3.17) 2dr(E) = {
r

2
+ (α2 − β2)}(Ef)−

4α

α2 − β2
{
r

2
+ 3(α2 − β2)}η(E).

Now, from (3.12) we infer that

(3.18) g(R(E,F )ξ,Df) = dr(E)η(F ) − dr(F )η(E).

Again (2.11) implies that

(3.19) g(R(E,F )ξ,Df) = (α2 − β2)[η(E)(Ff) − η(F )(Ef)].

Combining equation (3.18) and (3.19), we acquire

(3.20) dr(E)η(F ) − dr(F )η(E) = (α2 − β2)[η(E)(Ff)− η(F )(Ef)].

Setting F = ξ in the above equation gives

(3.21) Er = −(α2 − β2)(Ef).
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Using (3.21) in (3.17) we infer that

(3.22) {
r

2
+ 3(α2 − β2)}[(Ef)−

4α

α2 − β2
{
r

2
+ 3(α2 − β2)}η(E)] = 0.

This shows that either r = −6(α2 − β2) or Df = (ξf)ξ. Next, we consider the
above two cases as follows.

Case i: If r = −6(α2 − β2), then from (2.16) we get S = −2(α2 − β2)g , that
is the manifold is an Einstein manifold and hence from (2.15) it follows that the
manifold is of constant sectional curvature −(α2 − β2).

Case ii: If

(3.23) Df = (ξf)ξ.

Taking the covariant differentiation of (3.23) along any vector field E ∈ χ(M) we
get

(3.24) ∇EDf = E(ξf)ξ + (ξf)∇Eξ.

Replacing E by φE and taking inner product with φF yields

(3.25) g(∇φEDf, φF ) = (ξf){αg(E,F )− αη(E)η(F ) + βg(E, φF )}.

Interchanging E and F in the foregoing equation, we infer

(3.26) g(∇φFDf, φE) = (ξf){αg(E,F )− αη(E)η(F ) + βg(F, φE)}.

Applying Poincare’s lemma, we have d2f(E,F ) = 0 and hence by a straightforward
calculation we lead

(3.27) ∇Eg(gradf, F )−∇F g(gradf,E)− g(gradf,∇EF ) + g(gradf,∇F , E) = 0.

Since ∇g = 0, the above equation yields

(3.28) g(∇Egradf, F )− g(∇F gradf,E) = 0.

Replacing E by φE and F by φF in (3.28) and utilizing (3.25) and (3.26), we obtain

2(ξf)βg(E, φF ) = 0,

which implies that

(3.29) (ξf)βdη(E,F ) = 0.

Since dη 6= 0, either β = 0 or (ξf) = 0. Hence we conclude that either the
manifold is α-Kenmotsu or (f = constant) the gradient yamabe soliton is trivial.
This completes the proof. 2
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Proof of Theorem 1.4. Let us suppose that the Riemannian metric of a 3-
dimensional non-cosymplectic normal acm manifold with α, β =constant is a gra-
dient Einstein metric. Then from (1.3) we obtain

(3.30) ∇EDf = (λ+
r

2
)E −QE.

From which we get

(3.31) R(E,F )Df = (∇FQ)E − (∇EQ)F.

Now, from (2.19) we infer that

R(E,F )Df =
(Fr)

2
[E − η(E)ξ] −

(Er)

2
[F − η(F )ξ]

−{
r

2
+ 3(α2 − β2)}[αFη(E) − αEη(F )

−2βg(E, φF )ξ − βφFη(E) + βφEη(F )].(3.32)

The contraction of above equation along E and using (2.20), gives

(3.33) S(F,Df) =
(Fr)

2
.

Equation (3.14) and (3.33) together reveal that

(3.34)
(Er)

2
= {

r

2
+ (α2 − β2)}(Ef)− {

r

2
+ 3(α2 − β2)}η(E)(ξf).

Putting E = ξ and utilizing (2.20), we have

(3.35) (ξf) =
α

α2 − β2
{
r

2
+ 3(α2 − β2)}.

Hence, using (3.35) in (3.34), we get

(3.36)
(Er)

2
= {

r

2
+ (α2 − β2)}(Ef)−

α

α2 − β2
{
r

2
+ 3(α2 − β2)}2η(E).

Now, from (3.32) we infer that

(3.37) g(R(E,F )Df, ξ) = {
r

2
+ 3(α2 − β2)}2βg(E, φF ).

Combining equation (3.19) and (3.37) reveal that

(3.38) {
r

2
+ 3(α2 − β2)}2βg(E, φF ) = (α2 − β2)[η(E)(Ff)− η(F )(Ef)].

Putting F = ξ in the above equation gives

(3.39) (α2 − β2)[η(E)(ξf) − (Ef)].
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This shows that Df = (ξf)ξ, provided α 6= ±β. Hence from the previous
theorem, we conclude that either the manifold is α-Kenmotsu or f = constant. If
f = constant, then we get from (3.30) that the manifold is an Einstein manifold.
Since the manifold is under consideration of dimension 3, hence the manifold is of
constant sectional curvature.
This finishes the proof. 2

4. Example

We consider a 3-dimensional Riemannian manifold M = {(x, y, z) ∈ R
3},

(x, y, z) being the standard coordinate in R
3. Here we take the vector fields v1,

v2 and v3 given by

v1 =
∂

∂x
, v2 =

∂

∂y
, v3 = y

∂

∂x
+ z

∂

∂z
.

We define the Riemannian metric g on M by g(vi, vj) = δij , i, j = 1, 2, 3 and η,
a 1-form on M by η(E) = g(E, v1), for E ∈ χ(M). Let φ be a second order mixed
tensor field defined by φ(v1) = 0, φ(v2) = −v3, φ(v3) = v2.

In this setting (φ, ξ, η, g) becomes an almost contact structure onM with ξ = v1.
The setting of the vector fields v1, v2, v3 gives

[v1, v2] = [v3, v1] = 0, [v2, v3] = −v1.

Using Koszul’s formula, we calculate the following:

∇v1v1 = 0,∇v1v2 =
1

2
v3,∇v1v3 = −

1

2
v2

∇v2v1 =
1

2
v3,∇v2v2 = 0,∇v2v3 = −

1

2
v1

∇v3v1 = −
1

2
v2,∇v3v2 =

1

2
v1,∇v3v3 = 0

It is easy to verify that the manifold M is a 3-dimensional non-cosymplictic normal
almost contact metric manifold with α = 0 and β = 1

2 .

By using the well-known formula R(E,F )W = ∇E∇FW−∇F∇EW−∇[E,F ]W ,
we calculate the non-zero independent components of the curvature tensor as fol-
lows:

R(v1, v2)v2 =
1

4
v1, R(v1, v3)v3 =

1

4
v1, R(v2, v1)v1 =

1

4
v2,

R(v2, v3)v3 = −
3

4
v2, R(v3, v1)v1 =

1

4
v3, R(v3, v2)v2 = −

3

4
v3.

Therefore we get the non-zero components of Ricci tensor as S(v1, v1) =
1
2 , S(v2, v2) = S(v3, v3) = − 1

2 . Hence the scalar curvature r = − 1
2 =a constant.
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Let E = a1v1 + a2v2 + a3v3 and F = b1v1 + b2v2 + b3v3. Then

(£v1g)(E,F ) = g(∇Ev1, F ) + g(E,∇F v1)

= a2b3 − a3b2 + a3b2 − a2b3

= 0.

Therefore if we set λ = − 1
2 the (g, v1 = ξ) becomes a Yamabe Soliton on M and

also v1 is a Killing vector field with the scalar curvature r =constant.
Hence the Theorem 1.1 is verified.
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