• Title/Summary/Keyword: contact CR-submanifold

Search Result 17, Processing Time 0.018 seconds

Contact CR-Warped product Submanifolds in Cosymplectic Manifolds

  • Atceken, Mehmet
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.965-977
    • /
    • 2016
  • The aim of this paper is to study the geometry of contact CR-warped product submanifolds in a cosymplectic manifold. We search several fundamental properties of contact CR-warped product submanifolds in a cosymplectic manifold. We also give necessary and sufficient conditions for a submanifold in a cosymplectic manifold to be contact CR-(warped) product submanifold. After then we establish a general inequality between the warping function and the second fundamental for a contact CR-warped product submanifold in a cosymplectic manifold and consider contact CR-warped product submanifold in a cosymplectic manifold which satisfy the equality case of the inequality and some new results are obtained.

SCALAR CURVATURE OF CONTACT CR-SUBMANIFOLDS IN AN ODD-DIMENSIONAL UNIT SPHERE

  • Kim, Hyang-Sook;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.541-549
    • /
    • 2010
  • In this paper we derive an integral formula on an (n + 1)-dimensional, compact, minimal contact CR-submanifold M of (n - 1) contact CR-dimension immersed in a unit (2m+1)-sphere $S^{2m+1}$. Using this integral formula, we give a sufficient condition concerning with the scalar curvature of M in order that such a submanifold M is to be a generalized Clifford torus.

CONTACT THREE CR-SUBMANIFOLDS OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

  • Kim, Hyang-Sook;Kim, Young-Mi;Kwon, Jung-Hwan;Pak, Jin-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.373-391
    • /
    • 2007
  • We study an (n+3)($n\;{\geq}\;7-dimensional$ real submanifold of a (4m+3)-unit sphere $S^{4m+3}$ with Sasakian 3-structure induced from the canonical quaternionic $K\"{a}hler$ structure of quaternionic (m+1)-number space $Q^{m+1}$, and especially determine contact three CR-submanifolds with (p-1) contact three CR-dimension under the equality conditions given in (4.1), where p = 4m - n denotes the codimension of the submanifold. Also we provide necessary conditions concerning sectional curvature in order that a compact contact three CR-submanifold of (p-1) contact three CR-dimension in $S^{4m+3}$ is the model space $S^{4n_1+3}(r_1){\times}S^{4n_2+3}(r_2)$ for some portion $(n_1,\;n_2)$ of (n-3)/4 and some $r_1,\;r_2$ with $r^{2}_{1}+r^{2}_{2}=1$.

SCALAR CURVATURE OF CONTACT THREE CR-SUBMANIFOLDS IN A UNIT (4m + 3)-SPHERE

  • Kim, Hyang-Sook;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.585-600
    • /
    • 2011
  • In this paper we derive an integral formula on an (n + 3)-dimensional, compact, minimal contact three CR-submanifold M of (p-1) contact three CR-dimension immersed in a unit (4m+3)-sphere $S^{4m+3}$. Using this integral formula, we give a sufficient condition concerning the scalar curvature of M in order that such a submanifold M is to be a generalized Clifford torus.

SOME WARPED PRODUCT SUBMANIFOLDS OF A KENMOTSU MANIFOLD

  • Khan, Viqar Azam;Shuaib, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.863-881
    • /
    • 2014
  • Many differential geometric properties of a submanifold of a Kaehler manifold are conceived via canonical structure tensors T and F on the submanifold. For instance, a CR-submanifold of a Kaehler manifold is a CR-product if and only if T is parallel on the submanifold (c.f. [2]). Warped product submanifolds are generalized version of CR-product submanifolds. Therefore, it is natural to see how the non-triviality of the covariant derivatives of T and F gives rise to warped product submanifolds. In the present article, we have worked out characterizations in terms of T and F under which a contact CR- submanifold of a Kenmotsu manifold reduces to a warped product submanifold.

(n + 1)-DIMENSIONAL, CONTACT CR-SUBMANIFOLDS OF (n - 1) CONTACT CR-DIMENSION IN A SASAKIAN SPACE FORM

  • Kwon, Jung-Hwan;Pak, Jin-Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.3
    • /
    • pp.519-529
    • /
    • 2002
  • In this paper. We Study (n + 1)-dimensional Contact CR-submanifolds of (n - 1) contact CR-dimension immersed in a Sasakian space form M$\^$2m+1/(c) (2m=n+p, p>0), and especially determine such submanifolds under additional condition concerning with shape operator.

ON CONTACT THREE CR SUBMANIFOLDS OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

  • Kwon, Jung-Hwan;Pak, Jin--Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.561-577
    • /
    • 1998
  • We study (n+3)-dimensional contact three CR submanifolds of a Riemannian manifold with Sasakian three structure and investigate some characterizations of $S^{4r+3}$(a) $\times$ $S^{4s+3}$(b) ($a^2$$b^2$=1, 4(r + s) = n - 3) as a contact three CR sub manifold of a (4m+3)-dimensional unit sphere.

  • PDF