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SCALAR CURVATURE OF CONTACT CR-SUBMANIFOLDS
IN AN ODD-DIMENSIONAL UNIT SPHERE

HyaNG Sook KiM* AND JIN SUK PAK

ABSTRACT. In this paper we derive an integral formula on an (n + 1)-
dimensional, compact, minimal contact C R-submanifold M of (n — 1)
contact C'R-dimension immersed in a unit (2m + 1)-sphere S?™+1. Using
this integral formula, we give a sufficient condition concerning with the
scalar curvature of M in order that such a submanifold M is to be a
generalized Clifford torus.

1. Introduction

Let S?m*1 be a (2m + 1)-dimensional unit sphere, that is,
S _ e ot L 2] = 1),

For any point z € S?™*! we put £ = Jz, where J denotes the almost complex
structure of C™*!. We consider the orthogonal projection 7 : T,C™+! —
T.S?m*1, Putting ¢ = 7o J, we can see that the set (¢,&,n,g) is a Sasakian
structure on $?™+! where 7 is a 1-form dual to £ and g the standard metric
tensor field on S2™+1. So S§?™+! can be considered as a Sasakian manifold
of constant ¢-sectional curvature 1, that is, of constant curvature 1 (cf. [1, 2,
12)).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field ¢ of S?™+! and denote by D, the ¢-invariant subspace ¢T, M N T, M of
the tangent space T, M of M at x € M. Then £ cannot be contained in D, at
any point x € M.

When the ¢-invariant subspace D, has constant dimension for any x € M,
M is called a contact C R-submanifold and the constant is called contact CR-
dimension of M (cf. [5, 6, 9, 10]).

On an (n + 1)-dimensional contact C'R-submanifold of (n — 1) contact CR-
dimension, there is a non-zero vector U which is orthogonal to ¢ and contained
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in the complementary orthogonal subspace Di of D, in T, M. In this case
N =: ¢U must be normal to M and thus M can be dealt with a contact
CR-submanifold in the sense of Yano-Kon ([12]).

In this paper we shall study (n + 1)-dimensional contact C'R-submanifolds
of (n — 1) contact C' R-dimension immersed in S?*™*+1 and prove the following
theorem as a Sasakian version corresponding to the results provided in [3] and
[7]-

Theorem. Let M be an (n+ 1)(> 3)-dimensional compact, minimal, contact
CR-submanifold of (n — 1) contact CR-dimension in S*™*1. If the scalar
curvature of M is greater or equal to n® — 1, then

n+1

M = 52t+1(1"1) X SzSJrl(T’Q), t+s= B

L

where 3 + 13 = 1.

Remark. The above main theorem was provided in [9] under the condition that
the distinguished normal vector field N is parallel with respect to the normal
connection V*. For the complex and the quaternionic analogues corresponding
to the above theorem, see [3] and [7], respectively.

Manifolds, submanifolds, geometric objects and mappings we discuss in this
paper will be assumed to be connected, differentiable and of class C°.

2. Fundamental properties of contact C R-submanifolds

Let M be a (2m+1)-dimensional almost contact metric manifold with struc-
ture (¢,&,7,9). Then, by definition, it follows that

2.1) P°X =X +n(X)§, ¢£=0, n(¢X)=0, n(¢ =1,
' 9(X,9Y) = g(X,Y) —n(X)n(Y), n(X)=g(X,€)

for any vector fields X, Y tangent to M.

Let M be a contact CR-submanifold of (n — 1) contact C'R-dimension in
M, where n — 1 must be even. Then, as was already mentioned in §1, the
structure vector ¢ is always contained in D} and ¢D; C T, M~ at any point
x € M, where T, M+ denotes the normal space of M at x € M. Further, by
definition dimD; = 2 at any point € M, and so there exists a unit vector
field U contained in D+ which is orthogonal to £. Since ¢D- C T, M+ at any
point « € M, ¢U is a unit normal vector field to M, which will be denoted by
N, that is,

(2.2) N := ¢U.
Moreover, it is clear that ¢TM C TM & Span{N}. Hence we have, for any
tangent vector field X and for a local orthonormal basis {Nq}ta=1,...p (N1 :=

N, p := 2m — n) of normal vectors to M, the following decomposition in
tangential and normal components:

(2.3) ¢X = FX +u(X)N,
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(2.4) ¢N,=PN,, a=2,...,p.

It is easily shown that F' is a skew-symmetric linear endomorphism acting on
T, M. Since the structure vector field £ is tangent to M, (2.1) and (2.3) imply

(25)  F&=0, FU =0, g(U,X) = u(X), u(§) = g(U,§) =0, w(U) = L.
Next, applying ¢ to (2.3) and using (2.1), (2.3) and (2.5), we also have

(2.6) F2X = - X +n(X)é +u(X)U, u(FX)=0.
On the other hand, it is clear from (2.1), (2.2) and (2.5) that
(2.7) ¢N = —U,

which and (2.4) yield the existence of a local orthonormal basis {N, N,,
Ng+}a=1,... q of normal vectors to M such that

(2.8) Ng» :=¢Ny, a=1,...,q:=(p—1)/2.

We denote by V and V the Levi-Civita connection on M and M, respectively,
and by V= the normal connection induced from V on the normal bundle 7'M+
of M. Then Gauss and Weingarten formulae are given by

(2.9) WXY = ny-i-h(X,Y),

q
(210);  VxN=-AX+VEN = —AX + > {54(X)Nq + 54 (X)No- },

a=1

q
(2.10), VxNo=—=AuX = 5a(X)N + Y {8a(X) Ny + Sap+ (X) N },
b=1

q
(210)3  VxNor = —Ag- X — 50 (X)N + D {506(X)Np + sqepe (X) Ny }
b=1

for any vector fields X, Y tangent to M, where s’s are coeflicients of the normal
connection V. Here h denotes the second fundamental form and A, A,, A,-
the shape operators corresponding to the normals N, N,, N,«, respectively.
They are related by

(211)  A(X,Y) = g(AX,Y)N + zq:{g(AaX, Y)N, + g(Ag- X, Y)N,- ).

From now on we specialize to the case of an ambient Sasakian manifold M,
that is,

(2.12) Vit = 60X,

(2.13) (Vx9)Y = —g(X, Y)E+n(Y)X.
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Since ¢ is tangent to M, from (2.1), (2.3), (2.7), (2.8), (2.10)2, (2.10)3 and
(2.13), we can easily verify that

(2.14) A X = —FAp X 4 54+(X)U, ApX =FAX — 5,(X)U,
(2.15) 8a(X) = —u(Asp-X), S+ (X)=u(4,X), a=1,...,q
Since F' is skew-symmetric, (2.14) implies

(2.16), g(FA, + AcF)X,Y) = so(X)u(Y) — so(Y)u(X),
(2.16)2 G((FAg + A F)X,Y) = 50+ (X)u(Y) — 80+ (Y)u(X).

On the other hand, since F'D, = D, at each point x € M, we take an
orthonormal basis {e;}i=1,... n+1 of tangent vectors to M such that

(2.17) err1:=Fey, ... eq :=Fey, e, :=U, epy1:=&,

where we have put [ = (n — 1)/2. Replacing X by Fle; in the first equation of
(2.15) and using (2.5), we have

sa(Fe;) = —g(Ag-Fe;,U),
which together with (2.5) and (2.16)2 yields
sa(Fe;) = —sar(€;), i=1,... 1.

Similarly, replacing X by Fle; in the second equation of (2.15) and using (2.5)
and (2.16);, we have

(2.18) Sa(Fe;) = —sgx(€5), Sox(Fe;) =sq(e;), i=1,...,1.

Differentiating (2.3) and (2.7) covariantly along M and comparing the tan-
gential with normal parts, we have

(219) (Y F)X = —g(Y, X)¢ +n(X)Y — g(AY, X)U + u(X)AY,
(2.20) (Vyu)X = g(PAY, X),
(2.21) VxU = FAX

with the aid of (2.3), (2.8), (2.9), (2.10)y, (2.11) and (2.13). On the other hand,
since ¢ is tangent to M, from (2.9) and (2.12), it follows that

¢X = Vx& = Vx&+h(X,¢),
which together with (2.3) and (2.11) gives

(2.22) Vx§=FX,
(2.23) g(AL, X)) =u(X), ie, AE=U,
(2.24) A =0, Ap€=0, a=1,...,q

If the ambient manifold M is a (2m+ 1)-dimensional unit sphere S?™*! as a
Sasakian manifold of constant curvature 1, then its curvature tensor R satisfies

R(X,Y)Z = g(Y,2)X — g(X,Z)Y
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for any vector fields X, Y, Z tangent to M. Therefore, by means of the equation
of Gauss, we can easily see that the Ricci tensor Ric(Y, Z) has the form

Ric(Y, Z) = ng(Y, Z) + (trA)g(AY, Z) — g(A%Y, Z)
(2.25) £ {(A)g(ALY. 2) + (124, )g( A Y. 2)
o 9(AZY, Z) — (ALY, 2)}
and consequently the scalar curvature p is given by

p=n(n+1)+ (trd)* — trA?

2.26 a
(2.26) + Z{(trAa)2 + (trAg-)? —trA% —trA2.}.
a=1

Moreover, from the equation of Codazzi, we also have

(2ony VXAV - (wAX = ;{SG(X)AQY —sa(Y)AuX

—+ Sg* (X)Aa*y — Sg* (Y)AQ*X}

for any vector fields X, Y tangent to M (cf. [1, 2, 12]).

3. An integral formula on the compact contact C R-submanifold

Let M be an (n+ 1)-dimensional contact C'R-submanifold of (n —1) contact
C R-dimension immersed in a (2m + 1)-dimensional unit sphere S?m+1.
‘We now put

T :=VyU + (divU)U

and take the same orthonormal basis {e;};=1,.. n+1 of tangent vectors to M as
given in (2.17). Then it follows from (2.21) that

(3.1) T = FAU

since divU = E?jll g(e;, Ve, U) =tr(FA) =0.

From now on, for later use we shall compute divl’ = 377" g(e;, V., T) (for
a general formula of divT, see [11]).

Differentiating (3.1) covariantly and using (2.5), (2.19), (2.21) and (2.23),
we have

VxT = —g(X,AU)¢ + X — g(A*U, X)U + u(AU)AX

3.2
(3:2) + FAFAX + F(Vx A,
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from which, taking account of (2.5), (2.6) and (2.23), it follows that
n+1

divT = n — u(A’U) + (trA)u(AU) + Y g(FAF Ae;, ¢;)
i=1

(3.3) l

- Zg((vez‘A)Fei - (VFeiA)eia U)
i=1
On the other hand, using (2.5), (2.6), (2.15), (2.18) and (2.27), we can easily
obtain that

g((Ve,A)Fe; — (Vpe,A)e;, U)

M-

Il
-

(3.4) !

MN
MQ

{sa(€:)” + sa(Fei)® + s (€)? + 0= (Fei)*}

Il
-

i 1
because of 21 = n — 1. Inserting (3.4) back into (3.3), the equation (3.3) turns
out to be

a

n+1

divT = n + (trA)u(AU) + > g(FAF Ae;, ;) — u(AU)
i=1
(3.5) L.
— Z Z{sa €i)* 4 5a(Fei)? + sq- (€)% 4 sa- (Fe;)?}.
i=1a=1
On the other hand, using (2.5), (2.6) and (2.23), we can easily verify that

n+1 1

> g(FAF Ae;,e;) = SllFA- AF||? — trA% + u(A%U) 41,

i=1

which together with (3.5) implies

divl =n+1+ %HFA — AF||? + (trA)u(AU) — trA?
(3.6) q

l
- Z > {sale)? + sa(Fei)? + sax (€0) + sax (Fei)?}.

=1
Moreover, combining (2.26) with (3.6), we have

1
divT = §||FA — AF|]? + (trA)u(AU) — (trA)?

+p—(n*—1) - i{(tr/la)2 + (trAq-)?} + i(trAz +trA2.)
— Z Z{sa i)’ 4 sa(Fei)? 4 sq- (€)% 4 sa- (Fe;)? ).

i=1 a=1
Thus we have:
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Lemma 3.1. Let M be an (n+ 1)-dimensional compact contact C R-submani-
fold of (n — 1) contact C R-dimension immersed in S*™1. Then the following
equality is valid:

/M[1||FA CAF|? 4 p— (0% = 1) + (trAYu(AU) — (trA)>2

q

(3.7) *Z{ (trda)” + (trdq.)*} + Y (trA2 +trA2.)

a=1

l

- ZZ{sa(ei)z + 5a(Fei)? + sq+ (€)% 4 sq+ (Feg)?}] + 1 = 0.

=1 a=1

4. The proof of main theorem

In order to prove the main theorem stated in §1, we prepare:

Lemma 4.1. Let M be an (n+1)(> 3)-dimensional compact, minimal, contact
CR-submanifold of (n — 1) contact CR-dimension in S?™+1. If the scalar
curvature of M is greater or equal to n? — 1, then

(4.1) FA—AF =0

and the distinguished normal vector field N is parallel with respect to the normal
connection V+. Moreover, we have

(4.2) A, =0, Ap=0, a=1,...,q.
Proof. We first notice that (2.15) and (2.24) yield

l
Z{sa(ei)Q + 5q(Fes)?} = u(A2.U) — u(Aq-U)2,

!
Z{Sa*(ei)z + 8+ (Fey)?} = u(A%2U) — u(AU).

i=1

Inserting these equations back into (3.7) and taking account of (2.24), we have

/M[1||FA _AFIP 4 p— (02 = 1) + (trA)u(AU) — (trA)?

{(tI"A ) (trAa*)Q} + Z{U(AaU)2 + u(Aa* U)Z}

MQ

(43) a=1 a=1
q l
+Zz{g A a€is €i +g(A Fevaez) +g(Aa*euez)
a=1i=1

+ g(A%. Fe;, Fe;)} x1 = 0.
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If p is greater or equal to n? — 1, our assumptions yield (4.1) and
Aaei = AaFei = 0, Aa*ei = Aa*Fei = 07

4.4
(4.4) uw(A,U) =0, u(AnU)=0, a=1,...,q, i=1,...,1,

which and (2.15) imply
sa(€i) = sa(Fe;) =0,  sa»(€;) = 54 (Fe;) =0,
$a(U)=0, s.+(U)=0, a=1,...,q, 1=1,...,1L

Since $4(£) = $4-(§) = 0 because of (2.24), we have s, = s, = 0 (a =
1,...,q) which means that the distinguished normal vector field N is parallel
with respect to the normal connection by means of (2.10);. Also it is clear from
(2.15) that A,U = A.+U = 0, which combined with (2.24) and (4.4) implies
(4.2). O

Proof of main theorem. By means of Lemma 4.1, for the submanifold M given
in the main theorem, we can easily see that its first normal space is contained
in Span{N} which is invariant under parallel translation with respect to the
normal connection. Thus we may apply Erbacher’s reduction theorem ([4])
and so we can see that there exists an (n + 2)-dimensional totally geodesic
unit sphere S™*2 such that M C S™2. Here we note that (n + 2) is odd.
Moreover, since the tangent space T, S™ "2 of the totally geodesic submanifold
S"+2 at x € M is T, M @ Span{N}, S"*? is an invariant submanifold of §2™+!
with respect to ¢ (for definition, see [1, 12]) because of (2.2) and (2.3). Hence
the submanifold M can be regarded as a real hypersurface of S™*2 which is a
totally geodesic invariant submanifold of S2m+1!.

Tentatively we denote S"*2 by M’, and by i; the immersion of M into M’
and iy the totally geodesic immersion of M’ onto S?™*!. Then, from the Gauss
formula (2.9), it follows that

(4.5) Vi ity =i VxY + 1 (X,Y) = i1 VxY + g(A'X,Y)N',

where A’ is the second fundamental form of M in M’ and A’ is the corresponding
shape operator to a unit normal vector field N’ to M in M’. Since i = i3 0 i1,
making use of (4.5), we have

(4 6) ﬁ(izoil)X(Zé o il)Y = Z’Q(V;lX’l‘1Y)
' =i(i1VxY + g(A'X,Y)N'),

because M’ is totally geodesic in S?™ 1. Comparing (2.9) with (4.6), we easily
see that

(4.7) N=iN', A=A

Since M’ is an invariant submanifold of S?™*1, for any X’ € TM’,

(4.8) Gin X' = izd/ X'
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is valid, where ¢’ is the induced Sasakian structure of M’ = S”*2. Thus it
follows from (2.3), (4.7) and (4.8) that

;X = ¢)(Zg o il)X = izd)/ilX = ig(ilF/X + U,/(X)N/)
= iF'X + 4/ (X)isN' = iF'X +u/(X)N.

Comparing this equation with (2.3), we have F' = F’ and u = v/. By means
of Lemma 4.1, it is clear that M is a real hypersurface of S"*2 which satisfies
F'A" = A’F'. Thus, applying a theorem due to Kon ([8]), we may complete
the proof of our main theorem. O
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