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SCALAR CURVATURE OF CONTACT CR-SUBMANIFOLDS
IN AN ODD-DIMENSIONAL UNIT SPHERE

Hyang Sook Kim∗ and Jin Suk Pak

Abstract. In this paper we derive an integral formula on an (n + 1)-
dimensional, compact, minimal contact CR-submanifold M of (n − 1)
contact CR-dimension immersed in a unit (2m+1)-sphere S2m+1. Using
this integral formula, we give a sufficient condition concerning with the
scalar curvature of M in order that such a submanifold M is to be a
generalized Clifford torus.

1. Introduction

Let S2m+1 be a (2m + 1)-dimensional unit sphere, that is,

S2m+1 = {z ∈ Cm+1 : ‖z‖ = 1}.
For any point z ∈ S2m+1 we put ξ = Jz, where J denotes the almost complex
structure of Cm+1. We consider the orthogonal projection π : TzCm+1 →
TzS

2m+1. Putting φ = π ◦ J , we can see that the set (φ, ξ, η, g) is a Sasakian
structure on S2m+1, where η is a 1-form dual to ξ and g the standard metric
tensor field on S2m+1. So S2m+1 can be considered as a Sasakian manifold
of constant φ-sectional curvature 1, that is, of constant curvature 1 (cf. [1, 2,
12]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field ξ of S2m+1 and denote by Dx the φ-invariant subspace φTxM ∩ TxM of
the tangent space TxM of M at x ∈ M . Then ξ cannot be contained in Dx at
any point x ∈ M .

When the φ-invariant subspace Dx has constant dimension for any x ∈ M ,
M is called a contact CR-submanifold and the constant is called contact CR-
dimension of M (cf. [5, 6, 9, 10]).

On an (n + 1)-dimensional contact CR-submanifold of (n− 1) contact CR-
dimension, there is a non-zero vector U which is orthogonal to ξ and contained
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in the complementary orthogonal subspace D⊥x of Dx in TxM . In this case
N =: φU must be normal to M and thus M can be dealt with a contact
CR-submanifold in the sense of Yano-Kon ([12]).

In this paper we shall study (n + 1)-dimensional contact CR-submanifolds
of (n − 1) contact CR-dimension immersed in S2m+1 and prove the following
theorem as a Sasakian version corresponding to the results provided in [3] and
[7].

Theorem. Let M be an (n + 1)(≥ 3)-dimensional compact, minimal, contact
CR-submanifold of (n − 1) contact CR-dimension in S2m+1. If the scalar
curvature of M is greater or equal to n2 − 1, then

M = S2t+1(r1)× S2s+1(r2), t + s =
n + 1

2
− 1,

where r2
1 + r2

2 = 1.

Remark. The above main theorem was provided in [9] under the condition that
the distinguished normal vector field N is parallel with respect to the normal
connection ∇⊥. For the complex and the quaternionic analogues corresponding
to the above theorem, see [3] and [7], respectively.

Manifolds, submanifolds, geometric objects and mappings we discuss in this
paper will be assumed to be connected, differentiable and of class C∞.

2. Fundamental properties of contact CR-submanifolds

Let M be a (2m+1)-dimensional almost contact metric manifold with struc-
ture (φ, ξ, η, g). Then, by definition, it follows that

(2.1)
φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,

g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for any vector fields X, Y tangent to M .
Let M be a contact CR-submanifold of (n − 1) contact CR-dimension in

M , where n − 1 must be even. Then, as was already mentioned in §1, the
structure vector ξ is always contained in D⊥x and φD⊥x ⊂ TxM⊥ at any point
x ∈ M , where TxM⊥ denotes the normal space of M at x ∈ M . Further, by
definition dimD⊥x = 2 at any point x ∈ M , and so there exists a unit vector
field U contained in D⊥ which is orthogonal to ξ. Since φD⊥x ⊂ TxM⊥ at any
point x ∈ M , φU is a unit normal vector field to M , which will be denoted by
N , that is,

(2.2) N := φU.

Moreover, it is clear that φTM ⊂ TM ⊕ Span{N}. Hence we have, for any
tangent vector field X and for a local orthonormal basis {Nα}α=1,...,p (N1 :=
N, p := 2m − n) of normal vectors to M , the following decomposition in
tangential and normal components:

(2.3) φX = FX + u(X)N,
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(2.4) φNα = PNα, α = 2, . . . , p.

It is easily shown that F is a skew-symmetric linear endomorphism acting on
TxM . Since the structure vector field ξ is tangent to M , (2.1) and (2.3) imply

(2.5) Fξ = 0, FU = 0, g(U,X) = u(X), u(ξ) = g(U, ξ) = 0, u(U) = 1.

Next, applying φ to (2.3) and using (2.1), (2.3) and (2.5), we also have

(2.6) F 2X = −X + η(X)ξ + u(X)U, u(FX) = 0.

On the other hand, it is clear from (2.1), (2.2) and (2.5) that

(2.7) φN = −U,

which and (2.4) yield the existence of a local orthonormal basis {N , Na,
Na∗}a=1,...,q of normal vectors to M such that

(2.8) Na∗ := φNa, a = 1, . . . , q := (p− 1)/2.

We denote by∇ and∇ the Levi-Civita connection on M and M , respectively,
and by ∇⊥ the normal connection induced from ∇ on the normal bundle TM⊥

of M . Then Gauss and Weingarten formulae are given by

(2.9) ∇XY = ∇XY + h(X, Y ),

(2.10)1 ∇XN = −AX +∇⊥XN = −AX +
q∑

a=1

{sa(X)Na + sa∗(X)Na∗},

(2.10)2 ∇XNa = −AaX − sa(X)N +
q∑

b=1

{sab(X)Nb + sab∗(X)Nb∗},

(2.10)3 ∇XNa∗ = −Aa∗X − sa∗(X)N +
q∑

b=1

{sa∗b(X)Nb + sa∗b∗(X)Nb∗}

for any vector fields X, Y tangent to M , where s’s are coefficients of the normal
connection ∇⊥. Here h denotes the second fundamental form and A,Aa, Aa∗

the shape operators corresponding to the normals N, Na, Na∗ , respectively.
They are related by

(2.11) h(X, Y ) = g(AX, Y )N +
q∑

a=1

{g(AaX, Y )Na + g(Aa∗X, Y )Na∗}.

From now on we specialize to the case of an ambient Sasakian manifold M ,
that is,

(2.12) ∇Xξ = φX,

(2.13) (∇Xφ)Y = −g(X, Y )ξ + η(Y )X.
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Since ξ is tangent to M , from (2.1), (2.3), (2.7), (2.8), (2.10)2, (2.10)3 and
(2.13), we can easily verify that

(2.14) AaX = −FAa∗X + sa∗(X)U, Aa∗X = FAaX − sa(X)U,

(2.15) sa(X) = −u(Aa∗X), sa∗(X) = u(AaX), a = 1, . . . , q.

Since F is skew-symmetric, (2.14) implies

(2.16)1 g((FAa + AaF )X, Y ) = sa(X)u(Y )− sa(Y )u(X),

(2.16)2 g((FAa∗ + Aa∗F )X, Y ) = sa∗(X)u(Y )− sa∗(Y )u(X).

On the other hand, since FDx = Dx at each point x ∈ M , we take an
orthonormal basis {ei}i=1,...,n+1 of tangent vectors to M such that

(2.17) el+1 := Fe1, . . . , e2l := Fel, en := U, en+1 := ξ,

where we have put l = (n− 1)/2. Replacing X by Fei in the first equation of
(2.15) and using (2.5), we have

sa(Fei) = −g(Aa∗Fei, U),

which together with (2.5) and (2.16)2 yields

sa(Fei) = −sa∗(ei), i = 1, . . . , l.

Similarly, replacing X by Fei in the second equation of (2.15) and using (2.5)
and (2.16)1, we have

(2.18) sa(Fei) = −sa∗(ei), sa∗(Fei) = sa(ei), i = 1, . . . , l.

Differentiating (2.3) and (2.7) covariantly along M and comparing the tan-
gential with normal parts, we have

(2.19) (∇Y F )X = −g(Y, X)ξ + η(X)Y − g(AY, X)U + u(X)AY,

(2.20) (∇Y u)X = g(FAY, X),

(2.21) ∇XU = FAX

with the aid of (2.3), (2.8), (2.9), (2.10)1, (2.11) and (2.13). On the other hand,
since ξ is tangent to M , from (2.9) and (2.12), it follows that

φX = ∇Xξ = ∇Xξ + h(X, ξ),

which together with (2.3) and (2.11) gives

(2.22) ∇Xξ = FX,

(2.23) g(Aξ, X) = u(X), i.e., Aξ = U,

(2.24) Aaξ = 0, Aa∗ξ = 0, a = 1, . . . , q.

If the ambient manifold M is a (2m+1)-dimensional unit sphere S2m+1 as a
Sasakian manifold of constant curvature 1, then its curvature tensor R satisfies

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y
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for any vector fields X, Y, Z tangent to M . Therefore, by means of the equation
of Gauss, we can easily see that the Ricci tensor Ric(Y,Z) has the form

(2.25)

Ric(Y, Z) = ng(Y, Z) + (trA)g(AY, Z)− g(A2Y, Z)

+
q∑

a=1

{(trAa)g(AaY,Z) + (trAa∗)g(Aa∗Y, Z)

− g(A2
aY, Z)− g(A2

a∗Y,Z)}

and consequently the scalar curvature ρ is given by

(2.26)

ρ = n(n + 1) + (trA)2 − trA2

+
q∑

a=1

{(trAa)2 + (trAa∗)2 − trA2
a − trA2

a∗}.

Moreover, from the equation of Codazzi, we also have

(2.27)
(∇XA)Y − (∇Y A)X =

q∑
a=1

{sa(X)AaY − sa(Y )AaX

+ sa∗(X)Aa∗Y − sa∗(Y )Aa∗X}

for any vector fields X, Y tangent to M (cf. [1, 2, 12]).

3. An integral formula on the compact contact CR-submanifold

Let M be an (n+1)-dimensional contact CR-submanifold of (n−1) contact
CR-dimension immersed in a (2m + 1)-dimensional unit sphere S2m+1.

We now put

T := ∇UU + (divU)U

and take the same orthonormal basis {ei}i=1,...,n+1 of tangent vectors to M as
given in (2.17). Then it follows from (2.21) that

(3.1) T = FAU

since divU =
∑n+1

i=1 g(ei,∇eiU) = tr(FA) = 0.
From now on, for later use we shall compute divT =

∑n+1
i=1 g(ei,∇eiT ) (for

a general formula of divT , see [11]).
Differentiating (3.1) covariantly and using (2.5), (2.19), (2.21) and (2.23),

we have

(3.2)
∇XT = − g(X, AU)ξ + X − g(A2U,X)U + u(AU)AX

+ FAFAX + F (∇XA)U,
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from which, taking account of (2.5), (2.6) and (2.23), it follows that

(3.3)

divT = n− u(A2U) + (trA)u(AU) +
n+1∑

i=1

g(FAFAei, ei)

−
l∑

i=1

g((∇eiA)Fei − (∇FeiA)ei, U).

On the other hand, using (2.5), (2.6), (2.15), (2.18) and (2.27), we can easily
obtain that

(3.4)

l∑

i=1

g((∇ei
A)Fei − (∇Fei

A)ei, U)

=
l∑

i=1

q∑
a=1

{sa(ei)2 + sa(Fei)2 + sa∗(ei)2 + sa∗(Fei)2}

because of 2l = n− 1. Inserting (3.4) back into (3.3), the equation (3.3) turns
out to be

(3.5)

divT = n + (trA)u(AU) +
n+1∑

i=1

g(FAFAei, ei)− u(A2U)

−
l∑

i=1

q∑
a=1

{sa(ei)2 + sa(Fei)2 + sa∗(ei)2 + sa∗(Fei)2}.

On the other hand, using (2.5), (2.6) and (2.23), we can easily verify that
n+1∑

i=1

g(FAFAei, ei) =
1
2
‖FA−AF‖2 − trA2 + u(A2U) + 1,

which together with (3.5) implies

(3.6)

divT = n + 1 +
1
2
‖FA−AF‖2 + (trA)u(AU)− trA2

−
l∑

i=1

q∑
a=1

{sa(ei)2 + sa(Fei)2 + sa∗(ei)2 + sa∗(Fei)2}.

Moreover, combining (2.26) with (3.6), we have

divT =
1
2
‖FA−AF‖2 + (trA)u(AU)− (trA)2

+ ρ− (n2 − 1)−
q∑

a=1

{(trAa)2 + (trAa∗)2}+
q∑

a=1

(trA2
a + trA2

a∗)

−
l∑

i=1

q∑
a=1

{sa(ei)2 + sa(Fei)2 + sa∗(ei)2 + sa∗(Fei)2}.

Thus we have:
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Lemma 3.1. Let M be an (n + 1)-dimensional compact contact CR-submani-
fold of (n− 1) contact CR-dimension immersed in S2m+1. Then the following
equality is valid:

(3.7)

∫

M

[
1
2
‖FA−AF‖2 + ρ− (n2 − 1) + (trA)u(AU)− (trA)2

−
q∑

a=1

{(trAa)2 + (trAa∗)2}+
q∑

a=1

(trA2
a + trA2

a∗)

−
l∑

i=1

q∑
a=1

{sa(ei)2 + sa(Fei)2 + sa∗(ei)2 + sa∗(Fei)2}] ∗ 1 = 0.

4. The proof of main theorem

In order to prove the main theorem stated in §1, we prepare:

Lemma 4.1. Let M be an (n+1)(≥ 3)-dimensional compact, minimal, contact
CR-submanifold of (n − 1) contact CR-dimension in S2m+1. If the scalar
curvature of M is greater or equal to n2 − 1, then

(4.1) FA−AF = 0

and the distinguished normal vector field N is parallel with respect to the normal
connection ∇⊥. Moreover, we have

(4.2) Aa = 0, Aa∗ = 0, a = 1, . . . , q.

Proof. We first notice that (2.15) and (2.24) yield

l∑

i=1

{sa(ei)2 + sa(Fei)2} = u(A2
a∗U)− u(Aa∗U)2,

l∑

i=1

{sa∗(ei)2 + sa∗(Fei)2} = u(A2
aU)− u(AaU)2.

Inserting these equations back into (3.7) and taking account of (2.24), we have

(4.3)

∫

M

[
1
2
‖FA−AF‖2 + ρ− (n2 − 1) + (trA)u(AU)− (trA)2

−
q∑

a=1

{(trAa)2 + (trAa∗)2}+
q∑

a=1

{u(AaU)2 + u(Aa∗U)2}

+
q∑

a=1

l∑

i=1

{g(A2
aei, ei) + g(A2

aFei, F ei) + g(A2
a∗ei, ei)

+ g(A2
a∗Fei, F ei)}] ∗ 1 = 0.
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If ρ is greater or equal to n2 − 1, our assumptions yield (4.1) and

(4.4)
Aaei = AaFei = 0, Aa∗ei = Aa∗Fei = 0,

u(AaU) = 0, u(Aa∗U) = 0, a = 1, . . . , q, i = 1, . . . , l,

which and (2.15) imply

sa(ei) = sa(Fei) = 0, sa∗(ei) = sa∗(Fei) = 0,

sa(U) = 0, sa∗(U) = 0, a = 1, . . . , q, i = 1, . . . , l.

Since sa(ξ) = sa∗(ξ) = 0 because of (2.24), we have sa = sa∗ = 0 (a =
1, . . . , q) which means that the distinguished normal vector field N is parallel
with respect to the normal connection by means of (2.10)1. Also it is clear from
(2.15) that AaU = Aa∗U = 0, which combined with (2.24) and (4.4) implies
(4.2). ¤

Proof of main theorem. By means of Lemma 4.1, for the submanifold M given
in the main theorem, we can easily see that its first normal space is contained
in Span{N} which is invariant under parallel translation with respect to the
normal connection. Thus we may apply Erbacher’s reduction theorem ([4])
and so we can see that there exists an (n + 2)-dimensional totally geodesic
unit sphere Sn+2 such that M ⊂ Sn+2. Here we note that (n + 2) is odd.
Moreover, since the tangent space TxSn+2 of the totally geodesic submanifold
Sn+2 at x ∈ M is TxM ⊕Span{N}, Sn+2 is an invariant submanifold of S2m+1

with respect to φ (for definition, see [1, 12]) because of (2.2) and (2.3). Hence
the submanifold M can be regarded as a real hypersurface of Sn+2 which is a
totally geodesic invariant submanifold of S2m+1.

Tentatively we denote Sn+2 by M ′, and by i1 the immersion of M into M ′

and i2 the totally geodesic immersion of M ′ onto S2m+1. Then, from the Gauss
formula (2.9), it follows that

(4.5) ∇′i1X i1Y = i1∇XY + h′(X, Y ) = i1∇XY + g(A′X, Y )N ′,

where h′ is the second fundamental form of M in M ′ and A′ is the corresponding
shape operator to a unit normal vector field N ′ to M in M ′. Since i = i2 ◦ i1,
making use of (4.5), we have

(4.6)
∇(i2◦i1)X(i2 ◦ i1)Y = i2(∇′i1X i1Y )

= i2(i1∇XY + g(A′X, Y )N ′),

because M ′ is totally geodesic in S2m+1. Comparing (2.9) with (4.6), we easily
see that

(4.7) N = i2N
′, A = A′.

Since M ′ is an invariant submanifold of S2m+1, for any X ′ ∈ TM ′,

(4.8) φi2X
′ = i2φ

′X ′
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is valid, where φ′ is the induced Sasakian structure of M ′ = Sn+2. Thus it
follows from (2.3), (4.7) and (4.8) that

φiX = φ(i2 ◦ i1)X = i2φ
′i1X = i2(i1F ′X + u′(X)N ′)

= iF ′X + u′(X)i2N ′ = iF ′X + u′(X)N.

Comparing this equation with (2.3), we have F = F ′ and u = u′. By means
of Lemma 4.1, it is clear that M is a real hypersurface of Sn+2 which satisfies
F ′A′ = A′F ′. Thus, applying a theorem due to Kon ([8]), we may complete
the proof of our main theorem. ¤
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