ON CONTACT THREE CR SUBMANIFOLDS OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

JUNG-HWAN KWON AND JIN SUK PAK

ABSTRACT. We study (n+3)-dimensional contact three CR submanifolds of a Riemannian manifold with Sasakian three structure and investigate some characterizations of $S^{4r+3}(a) \times S^{4s+3}(b)$ $(a^2+b^2=1,\ 4(r+s)=n-3)$ as a contact three CR submanifold of a (4m+3)-dimensional unit sphere.

1. Introduction

Let S^{4m+3} be a (4m+3)-dimensional unit sphere, that is,

$$S^{4m+3} = \{ q \in Q^{m+1} : ||q|| = 1 \},$$

where Q^{m+1} is the real 4(m+1)-dimensional quaternionic number space. For any point q in S^{4m+3} , we put

$$\xi = Iq, \quad \eta = Jq, \quad \zeta = Kq,$$

where $\{I, J, K\}$ denotes the canonical quaternionic Kähler structure of Q^{m+1} . Then $\{\xi, \eta, \zeta\}$ becomes a Sasakian three structure, that is, ξ , η and ζ are mutually orthogonal unit Killing vector fields which satisfy

(1.1)
$$\begin{cases} \overline{\nabla}_{Y}\overline{\nabla}_{X}\xi = g(X,\xi)Y - g(Y,X)\xi, \\ \overline{\nabla}_{Y}\overline{\nabla}_{X}\eta = g(X,\eta)Y - g(Y,X)\eta, \\ \overline{\nabla}_{Y}\overline{\nabla}_{X}\zeta = g(X,\zeta)Y - g(Y,X)\zeta \end{cases}$$

Received February 14, 1998. Revised May 19, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 53C40, 53C15.

Key words and phrases: contact three CR submanifold, contact three CR dimension, Sasakian three structure, (4m + 3)-dimensional unit sphere.

The first author was supported (in part) by the Taegu University Research Grant and the second by BSRI-98-1404 and TGRC-KOSEF.

for any vector fields X, Y tangent to S^{4m+3} , where g denotes the canonical metric on S^{4m+3} induced from that of Q^{m+1} and $\overline{\nabla}$ the Riemannian connection with respect to g. In this case, putting

$$(1.2) \phi X = \overline{\nabla}_X \xi, \quad \psi X = \overline{\nabla}_X \eta, \quad \theta X = \overline{\nabla}_X \zeta,$$

it follows that

(1.3)
$$\begin{aligned} \phi \xi &= 0, \ \psi \eta = 0, \ \theta \zeta = 0, \\ \theta \eta &= -\psi \zeta = \xi, \ \phi \zeta = -\theta \xi = \eta, \ \psi \xi = -\phi \eta = \zeta, \\ [\eta, \zeta] &= 2\xi, \ [\zeta, \xi] = 2\eta, \ [\xi, \eta] = 2\zeta \end{aligned}$$

and

$$\phi^{2} = -I + f_{\xi} \otimes \xi, \quad \psi^{2} = -I + f_{\eta} \otimes \eta, \quad \theta^{2} = -I + f_{\zeta} \otimes \zeta,$$

$$(1.4) \quad \psi\theta = \phi + f_{\eta} \otimes \zeta, \quad \theta\phi = \psi + f_{\zeta} \otimes \xi, \quad \phi\psi = \theta + f_{\xi} \otimes \eta,$$

$$\theta\psi = -\phi + f_{\zeta} \otimes \eta, \quad \phi\theta = -\psi + f_{\xi} \otimes \zeta, \quad \psi\phi = -\theta + f_{\eta} \otimes \xi,$$

where I denotes the identity transformation and

(1.5)
$$f_{\xi}(X) = g(X, \xi), \quad f_{\eta}(X) = g(X, \eta), \quad f_{\zeta}(X) = g(X, \zeta)$$

(cf. [4,5,7,8,10]). Moreover, from (1.3) and (1.4), we have

(1.6)
$$\mathcal{L}_{\xi}\phi = 0, \quad \mathcal{L}_{\eta}\phi = -2\theta, \quad \mathcal{L}_{\zeta}\phi = 2\psi,$$
$$\mathcal{L}_{\xi}\psi = 2\theta, \quad \mathcal{L}_{\eta}\psi = 0, \quad \mathcal{L}_{\zeta}\psi = -2\phi,$$
$$\mathcal{L}_{\xi}\theta = -2\psi, \quad \mathcal{L}_{\eta}\theta = 2\phi, \quad \mathcal{L}_{\zeta}\theta = 0,$$

where \mathcal{L}_X denotes the Lie derivative with respect to X.

Let M be an (n+3)-dimensional submanifold tangent to the structure vectors ξ , η and ζ of S^{4m+3} . If there exists a subbundle ν of the normal bundle TM^{\perp} such that

$$(1.7) \phi \nu_x \subset \nu_x, \quad \psi \nu_x \subset \nu_x, \quad \theta \nu_x \subset \nu_x,$$

$$(1.8) \phi\nu_x^{\perp} \subset T_x M, \psi\nu_x^{\perp} \subset T_x M, \theta\nu_x^{\perp} \subset T_x M$$

for each x in M, where ν^{\perp} is the complementary orthogonal subbundle to ν in TM^{\perp} and TM the tangent bundle of M, then the submanifold is called a *contact three CR submanifold* of S^{4m+3} and the dimension of ν contact three CR dimension. A typical example of contact three CR submanifold with zero contact three CR dimension is a real hypersurface.

In this paper we shall study (n+3)-dimensional contact three CR submanifolds with (p-1) contact three CR dimension of S^{4m+3} , where p is 4m-n the codimension. In this case the maximal $\{\phi, \psi, \theta\}$ -invariant subspace

$$\mathcal{D}_x = T_x M \cap \phi T_x M \cap \psi T_x M \cap \theta T_x M$$

of T_xM has constant dimension n-3 because the orthogonal complement \mathcal{D}_x^{\perp} to \mathcal{D}_x in T_xM has constant dimension 6 at any point x in M (for details, see section 2).

We shall investigate some geometric characterizations of

$$S^{4r+3}(a) \times S^{4s+3}(b) \ (a^2 + b^2 = 1, \ r+s = (n-3)/4)$$

as a contact three CR submanifold of a (4m+3)-dimensional unit sphere.

2. Preliminaries

Let M be an (n+3)-dimensional contact three CR submanifold in a (4m+3)-dimensional Riemannian manifold \overline{M} with Sasakian three structure $\{\xi,\eta,\zeta\}$ which satisfies (1.1). Then, by definition, we may set $\nu^{\perp} = Span \{N_1\}$ for a unit normal vector field N_1 to M. Here and in the sequel we use the same notations as shown in section 1. Put

(2.1)
$$U = -\phi N_1, \quad V = -\psi N_1, \quad W = -\theta N_1.$$

Then from (1.3), (1.4) and (1.8) we can see that U, V, W are mutually orthogonal unit tangent vector fields to M and satisfy

$$g(\xi, U) = 0, \quad g(\xi, V) = 0, \quad g(\xi, W) = 0,$$

$$g(\eta, U) = 0, \quad g(\eta, V) = 0, \quad g(\eta, W) = 0,$$

$$g(\zeta, U) = 0, \quad g(\zeta, V) = 0, \quad g(\zeta, W) = 0.$$

Moreover ξ , η , ζ , U, V and W are all contained in \mathcal{D}_x^{\perp} and consequently $\dim \mathcal{D}_x^{\perp} \geq 6$ at any point x in M. But we can prove that $\dim \mathcal{D}_x^{\perp} = 6$ at any point x in M. In fact, if there is a non-zero vector $S \in \mathcal{D}_x^{\perp}$ which is orthogonal to all of ξ , η , ζ , U, V and W, then it is clear that g(U,S) = 0 and thus $g(N_1, \phi S) = 0$ because of (2.1). Hence, if $\phi S \in T_x M^{\perp}$, then $\phi S \in \nu_x$ and consequently it follows from (1.7) that $S \in \nu_x$ which is a contradiction. So $\phi S \in T_x M$. Similarly we can prove that ϕS , ψS , $\theta S \in T_x M$, let say

$$Z_1 := \phi S$$
, $Z_2 := \psi S$, $Z_3 := \theta S$.

Then $\phi Z_1 = \psi Z_2 = \theta Z_3 = -S$ and consequently $S \in \mathcal{D}_x$, which is also a contradiction. Hence we have $\dim \mathcal{D}_x^{\perp} = 6$. Therefore, for any tangent vector field X and for a local orthonormal basis $\{N_{\alpha}\}_{\alpha=1,\dots,p}$ (p=4m-n) of normal vectors to M, we have the following decomposition in tangential and normal components:

(2.3)
$$\phi X = FX + u^{1}(X)N_{1}, \quad \psi X = GX + v^{1}(X)N_{1},$$

$$\theta X = HX + w^{1}(X)N_{1},$$

$$(2.4) \qquad \phi N_{\alpha} = -U_{\alpha} + P_{\phi}N_{\alpha}, \quad \psi N_{\alpha} = -V_{\alpha} + P_{\psi}N_{\alpha},$$

$$\theta N_{\alpha} = -W_{\alpha} + P_{\theta}N_{\alpha}, \quad \alpha = 1, \dots, p.$$

It follows easily from (1.4) that $\{F,G,H\}$ and $\{P_{\phi},P_{\psi},P_{\theta}\}$ are respectively skew-symmetric linear endomorphisms acting on T_xM and T_xM^{\perp} . Since the Sasakian three structure $\{\xi,\eta,\zeta\}$ is tangent to M, the equations (1.4), (2.3) and (2.4) imply

(2.5)
$$\begin{cases} F^{2}X = -X + f_{\xi}(X)\xi + u^{1}(X)U_{1}, & u^{1}(FX) = 0, \\ G^{2}X = -X + f_{\eta}(X)\eta + v^{1}(X)V_{1}, & v^{1}(GX) = 0, \\ H^{2}X = -X + f_{\zeta}(X)\zeta + w^{1}(X)W_{1}, & w^{1}(HX) = 0, \end{cases}$$

$$GFX = -HX + f_{\eta}(X)\xi + u^{1}(X)V_{1}, & v^{1}(FX) = -w^{1}(X),$$

$$HFX = GX + f_{\zeta}(X)\xi + u^{1}(X)W_{1}, & w^{1}(FX) = v^{1}(X),$$

$$FGX = HX + f_{\xi}(X)\eta + v^{1}(X)U_{1}, & u^{1}(GX) = w^{1}(X),$$

$$HGX = -FX + f_{\zeta}(X)\eta + v^{1}(X)W_{1}, & w^{1}(GX) = -u^{1}(X),$$

$$FHX = -GX + f_{\xi}(X)\zeta + w^{1}(X)U_{1}, & u^{1}(HX) = -v^{1}(X),$$

$$GHX = FX + f_{\eta}(X)\zeta + w^{1}(X)V_{1}, & v^{1}(HX) = u^{1}(X).$$

(2.7)
$$g(U_{\alpha}, X) = u^{1}(X)\delta_{1\alpha}, \quad g(V_{\alpha}, X) = v^{1}(X)\delta_{1\alpha},$$
$$g(W_{\alpha}, X) = w^{1}(X)\delta_{1\alpha}, \quad \alpha = 1, \dots, p.$$

which yields

(2.8)
$$g(U_1, X) = u^1(X), \ g(V_1, X) = v^1(X), \ g(W_1, X) = w^1(X),$$

$$U_{\alpha} = 0, \ V_{\alpha} = 0, \ W_{\alpha} = 0, \ \alpha = 2, \dots, p,$$

(2.9)
$$\begin{cases} g(U_{\alpha}, U_{\beta}) = \delta_{\alpha\beta} - g(P_{\phi}N_{\alpha}, P_{\phi}N_{\beta}), \\ g(V_{\alpha}, V_{\beta}) = \delta_{\alpha\beta} - g(P_{\psi}N_{\alpha}, P_{\psi}N_{\beta}), \\ g(W_{\alpha}, W_{\beta}) = \delta_{\alpha\beta} - g(P_{\theta}N_{\alpha}, P_{\theta}N_{\beta}). \end{cases}$$

From (1.3) and (2.3), it follows that

(2.10)
$$F\xi = 0, \ G\eta = 0, \ H\zeta = 0, \ F\eta = -\zeta, \ F\zeta = \eta, \\ G\xi = \zeta, \ G\zeta = -\xi, \ H\xi = -\eta, \ H\eta = \xi, \\ u^{1}(\xi) = 0, \ u^{1}(\eta) = 0, \ u^{1}(\zeta) = 0, \ v^{1}(\xi) = 0, \ v^{1}(\eta) = 0, \\ v^{1}(\zeta) = 0, \ w^{1}(\xi) = 0, \ w^{1}(\eta) = 0, \ w^{1}(\zeta) = 0.$$

Using (1.4) and (2.1)-(2.4), we have

$$FU_1 = 0, \ GV_1 = 0, \ HW_1 = 0, \ FV_1 = W_1,$$

$$FW_1 = -V_1, \ GU_1 = -W_1, \ GW_1 = U_1, \ HU_1 = V_1,$$

$$HV_1 = -U_1, \ P_{\phi}N_1 = 0, \ P_{\psi}N_1 = 0, \ P_{\theta}N_1 = 0,$$

which together with (2.1) and (2.4) implies

$$U=U_1, \quad V=V_1, \quad W=W_1.$$

Therefore we may put

(2.12)
$$P_{\phi}N_{\alpha} = \sum_{\beta=2}^{p} P_{\alpha\beta}^{\phi} N_{\beta}, \quad P_{\psi}N_{\alpha} = \sum_{\beta=2}^{p} P_{\alpha\beta}^{\psi} N_{\beta},$$
$$P_{\theta}N_{\alpha} = \sum_{\beta=2}^{p} P_{\alpha\beta}^{\theta} N_{\beta}, \quad \alpha = 2, \dots, p,$$

where $(P_{\alpha\beta}^{\phi})$, $(P_{\alpha\beta}^{\psi})$ and $(P_{\alpha\beta}^{\theta})$ are skew-symmetric matrices which satisfy

(2.13)
$$\sum_{\gamma=2}^{p} P_{\alpha\gamma}^{\phi} P_{\gamma\beta}^{\phi} = -\delta_{\alpha\beta}, \quad \sum_{\gamma=2}^{p} P_{\alpha\gamma}^{\psi} P_{\gamma\beta}^{\psi} = -\delta_{\alpha\beta},$$
$$\sum_{\gamma=2}^{p} P_{\alpha\gamma}^{\theta} P_{\gamma\beta}^{\theta} = -\delta_{\alpha\beta}.$$

3. Fundamental equations for contact three CR submanifold

Let M be as in section 2. We denote by ∇ the Levi-Civita connection on M and denote by D the normal connection induced from $\overline{\nabla}$ in TM^{\perp} . Then the Gauss and Weingarten equations are of the form

$$(3.1) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

$$(3.2) \overline{\nabla}_X N_{\alpha} = -A_{\alpha} X + D_X N_{\alpha}, \quad \alpha = 1, \dots, p$$

for any tangent vector fields X, Y to M. Here h denotes the second fundamental form and A_{α} is the shape operator corresponding to N_{α} . They are related by

$$h(X,Y) = \sum_{\alpha=1}^{p} g(A_{\alpha}X, Y) N_{\alpha}.$$

Furthermore we may put

(3.3)
$$D_X N_{\alpha} = \sum_{\beta=1}^p s_{\alpha\beta}(X) N_{\beta},$$

where $(s_{\alpha\beta})$ is the skew-symmetric matrix of connection forms of D. Finally the equations of Gauss, Codazzi and Ricci (cf. [2,6]) are given by

(3.4)
$$g(\overline{R}_{XY}Z, W) = g(R_{XY}Z, W) + \sum_{\alpha} \{g(A_{\alpha}X, Z)g(A_{\alpha}Y, W) - g(A_{\alpha}Y, Z)g(A_{\alpha}X, W)\},$$

(3.5)
$$g(\overline{R}_{XY}Z, N_{\alpha}) = g((\nabla_{X}A_{\alpha})Y - (\nabla_{Y}A_{\alpha})X, Z) + \sum_{\beta} \{g(A_{\beta}Y, Z)s_{\beta\alpha}(X) - g(A_{\beta}X, Z)s_{\beta\alpha}(Y)\},$$

$$(3.6) g(\overline{R}_{XY}N_{\alpha}, N_{\beta}) = g(R_{XY}^{\perp}N_{\alpha}, N_{\beta}) + g([A_{\beta}, A_{\alpha}]X, Y)$$

for any tangent vector fields X, Y, Z to M, where \overline{R} and R denote the Riemannian curvature tensor of \overline{M} and M respectively and R^{\perp} is the curvature tensor of the normal connection D.

Differentiating (2.3) covariantly and using (1.1), (1.2), (2.8), (2.11), (3.1) and (3.2), we have

(3.7)
$$(\nabla_Y F)X = g(X,\xi)Y - g(X,Y)\xi - g(A_1X,Y)U + u^1(X)A_1Y,$$
$$(\nabla_Y u^1)X = -g(A_1FX,Y),$$

(3.8)
$$(\nabla_Y G)X = g(X, \eta)Y - g(X, Y)\eta - g(A_1X, Y)V + v^1(X)A_1Y,$$
$$(\nabla_Y v^1)X = -g(A_1GX, Y),$$

(3.9)
$$(\nabla_Y H)X = g(X,\zeta)Y - g(X,Y)\zeta - g(A_1X,Y)W + w^1(X)A_1Y,$$
$$(\nabla_Y w^1)X = -g(A_1HX,Y).$$

Differentiating (2.1) covariantly and using (1.1), (1.2), (2.8) and (3.1)-(3.3), we have

(3.10)
$$\begin{cases} \nabla_X U = F A_1 X, \\ g(A_{\alpha} U, X) = -\sum_{\beta=2}^p s_{1\beta}(X) P_{\beta\alpha}^{\phi}, \quad \alpha = 2, \dots, p, \end{cases}$$

(3.11)
$$\begin{cases} \nabla_X V = GA_1 X, \\ g(A_{\alpha} V, X) = -\sum_{\beta=2}^p s_{1\beta}(X) P_{\beta\alpha}^{\psi}, \quad \alpha = 2, \dots, p, \end{cases}$$

(3.12)
$$\begin{cases} \nabla_X W = HA_1 X, \\ g(A_{\alpha} W, X) = -\sum_{\beta=2}^p s_{1\beta}(X) P_{\beta\alpha}^{\theta}, \quad \alpha = 2, \dots, p. \end{cases}$$

On the other hand, since ξ , η and ζ are tangent to M, it follows from (1.2) that

(3.13)
$$\begin{cases} \nabla_X \xi = FX, \\ g(A_1 \xi, X) = u^1(X), & \text{that is,} \quad A_1 \xi = U, \\ A_{\alpha} \xi = 0, \quad \alpha = 2, \dots, p, \end{cases}$$

(3.14)
$$\begin{cases} \nabla_X \eta = GX, \\ g(A_1 \eta, X) = v^1(X), & \text{that is,} \quad A_1 \eta = V, \\ A_\alpha \eta = 0, \quad \alpha = 2, \dots, p, \end{cases}$$

(3.15)
$$\begin{cases} \nabla_X \zeta = HX, \\ g(A_1 \zeta, X) = w^1(X), & \text{that is,} \quad A_1 \zeta = W, \\ A_{\alpha} \zeta = 0, \quad \alpha = 2, \dots, p. \end{cases}$$

In the rest of this paper we suppose that \overline{M} is of constant curvature 1 and that N_1 is parallel with respect to the normal connection D. Hence it follows from (3.3) that

(3.16)
$$s_{1\beta} = 0, \quad \beta = 2, \dots, p,$$

which together with (3.10)-(3.12) implies

(3.17)
$$A_{\alpha}U = 0, \quad A_{\alpha}V = 0, \quad A_{\alpha}W = 0, \quad \alpha = 2, \dots, p.$$

Since the curvature tensor \overline{R} of \overline{M} is of the form

$$\overline{R}_{XY}Z = g(Y,Z)X - g(X,Z)Y,$$

the equations (3.5) and (3,16) give

(3.18)
$$(\nabla_X A_1) Y - (\nabla_Y A_1) X = 0.$$

4. Some properties of the shape operator A_1

In this section we assume that A_1 and $\{F, G, H\}$ are commute on M, that is,

$$(4.1) A_1F = FA_1, A_1G = GA_1, A_1H = HA_1.$$

Then (2.11) and (4.1) yield

$$FA_1U = 0$$
, $GA_1V = 0$, $HA_1W = 0$,

from which together with (2.5) and (3.13)-(3.15), it follows that

$$A_1U = \xi + \lambda_1 U, \quad A_1V = \eta + \lambda_2 V,$$
$$A_1W = \zeta + \lambda_3 W,$$

where $\lambda_1 = u^1(A_1U) = g(A_1U, U)$, $\lambda_2 = v^1(A_1V) = g(A_1V, V)$ and $\lambda_3 = w^1(A_1W) = g(A_1W, W)$. By the way, from (2.6) and (4.1) we have

$$\lambda_1 = u^1(A_1U) = v^1(HA_1U) = v^1(A_1HU),$$

which and (2.11) imply $\lambda_1 = v^1(A_1V) = \lambda_2$. Similarly we have $\lambda_1 = \lambda_2 = \lambda_3$ and consequently

$$(4.2) A_1 U = \xi + \lambda U, A_1 V = \eta + \lambda V, A_1 W = \zeta + \lambda W,$$

where here and in the sequel we put $\lambda = \lambda_1$.

Differentiating (4.2) covariantly and using (3.10) and (3.13), we obtain

$$(\nabla_X A_1)U + A_1 F A_1 X = FX + (X\lambda)U + \lambda F A_1 X$$

and therefore

(4.3)
$$g((\nabla_X A_1)Y, U) = g(A_1^2 X, FY) + g(FX, Y) + (X\lambda)g(U, Y) + \lambda g(FA_1 X, Y)$$

with the aid of (4.1). Moreover, from (3.18), (4.1) and (4.3), it follows that

(4.4)
$$2g(A_1^2X, FY) + 2g(FX, Y) + (X\lambda)g(U, Y) - (Y\lambda)g(U, X) + 2\lambda g(FA_1X, Y) = 0.$$

Putting X = U or Y = U in (4.4), we may have

(4.5)
$$X\lambda = (U\lambda)u^{1}(X), \quad Y\lambda = (U\lambda)u^{1}(Y)$$

because of (2.11) and (4.1), and hence (4.4) reduces to

$$(4.6) FA_1^2X = \lambda FA_1X + FX.$$

On the other hand, from the first equation of (4.5), it is clear that

$$\nabla_X(grad\ \lambda) = (X\mu)U + \mu F A_1 X,$$

where $\mu = U\lambda$. Since $g(\nabla_X(grad \lambda), Y) = g(\nabla_Y(grad \lambda), X)$, we have

$$(4.7) (X\mu)u^{1}(Y) - (Y\mu)u^{1}(X) + 2\mu g(FA_{1}X, Y) = 0,$$

from which, putting X = U or Y = U, we find

$$X\mu = (U\mu)u^{1}(X), \quad Y\mu = (U\mu)u^{1}(Y).$$

Hence (4.7) gives $\mu F A_1 X = 0$, from which together with (4.1) and (4.6) we can easily see that μ must be zero and λ is constant. Now we prove

LEMMA 4.1. Let M be an (n+3)-dimensional contact three CR submanifold with (p-1) contact three CR dimension in an (n+p+3)-dimensional Riemannian manifold with Sasakian three structure and of constant curvature 1. If

$$A_1F = FA_1$$
, $A_1G = GA_1$, $A_1H = HA_1$

and N_1 is parallel with respect to the normal connection, then

$$(4.8) A_1^2 = \lambda A_1 + I,$$

$$(4.9) \nabla A_1 = 0,$$

where $\lambda = u^1(A_1U)$ is constant.

PROOF. Applying F to (4.6) and using (2.5), (3.13) and (4.2), we have

$$(4.10) A_1^2 X = \lambda A_1 X + X,$$

which implies (4.8). Next, differentiating (4.10) covariantly and using the fact that λ is constant, we have

$$(4.11) (\nabla_Y A_1) A_1 X + A_1 (\nabla_Y A_1) X = \lambda (\nabla_Y A_1) X,$$

from which, taking account of (3.18), we obtain

$$(\nabla_Y A_1) A_1 X = (\nabla_X A_1) A_1 Y,$$

and consequently

$$g((\nabla_Y A_1)A_1X, Z) = g((\nabla_X A_1)A_1Y, Z) = g(A_1(\nabla_X A_1)Z, Y).$$

Since $g((\nabla_Y A_1)A_1X, Z) = g((\nabla_Z A_1)A_1X, Y)$, the above equation yields $g((\nabla_Y A_1)A_1X, Z) = g(A_1(\nabla_X A_1)Y, Z)$, which implies

$$(\nabla_Y A_1) A_1 X = A_1 (\nabla_Y A_1) X.$$

Thus (4.11) reduces to $2A_1(\nabla_Y A_1)X = \lambda(\nabla_Y A_1)X$, from which, applying A_1 and using (4.8), we have $\frac{\lambda^2+4}{2}(\nabla_Y A_1)X = 0$ and consequently (4.9) follows.

Let ρ be an eigenvalue of A_1 . Then from (4.8) it is clear that ρ satisfies $\rho^2 - \lambda \rho - 1 = 0$ and consequently A_1 has exactly two constant eigenvalues

$$\rho_1 = (\lambda + \sqrt{\lambda^2 + 4})/2, \quad \rho_2 = (\lambda - \sqrt{\lambda^2 + 4})/2.$$

In fact, since $\rho_k^2 - \lambda \rho_k - 1 = 0$ (k = 1, 2), (3.13)-(3.15) and (4.2) imply

$$A_1(\rho_1 U + \xi) = \rho_1(\rho_1 U + \xi), \quad A_1(\rho_2 U + \xi) = \rho_2(\rho_2 U + \xi),$$

$$A_1(\rho_1 V + \eta) = \rho_1(\rho_1 V + \eta), \quad A_1(\rho_2 V + \eta) = \rho_2(\rho_2 V + \eta),$$

$$A_1(\rho_1 W + \zeta) = \rho_1(\rho_1 W + \zeta), \quad A_1(\rho_2 W + \zeta) = \rho_2(\rho_2 W + \zeta).$$

Since the eigenvalues are constant, the eigenspaces define distributions on M. We denote them by T_k for k = 1, 2, that is,

$$T_k = \{ X \in TM : A_1 X = \rho_k X \}.$$

By means of (4.9), we can easily see that the distribution T_1 , T_2 are both involutive and that the integral submanifolds M_k of T_k , k = 1, 2, are totally geodesic and parallel along T_j , $j \neq k$.

5. Main results

In this section let \overline{M} be the (4m+3)-dimensional unit sphere S^{4m+3} , as already shown in section 1, in $\mathbb{R}^{4(m+1)}$ with center at the origin O of $\mathbb{R}^{4(m+1)}$. Let \widetilde{N} be the inward unit normal to S^{4m+3} . Then the equations of Gauss and Weingarten for S^{4m+3} are given by

(5.1)
$$\widetilde{\nabla}_X Y = \overline{\nabla}_X Y + g(X, Y) \widetilde{N},$$

$$(5.2) \widetilde{\nabla}_X \widetilde{N} = -X$$

for any vector fields X, Y tangent to S^{4m+3} , where $\widetilde{\nabla}$ denotes the Euclidean connection of $\mathbb{R}^{4(m+1)}$. In particular, for $Y = N_1$ it follows from (3.2) and (3.3) with $\alpha = 1$, (3.16) and (5.1) that

(5.3)
$$\widetilde{\nabla}_X N_1 = \overline{\nabla}_X N_1 + g(X, N_1) \widetilde{N}$$

$$= -A_1 X + \sum_{\alpha=1}^p s_{1\alpha}(X) N_\alpha + g(X, N_1) \widetilde{N}$$

$$= -A_1 X$$

for any tangent vector field X to M.

From now on, we consider the integral submanifolds M_k , k = 1, 2. Let P_k be the position vector of M_k in $\mathbb{R}^{4(m+1)}$ and put

$$Q_k = P_k + (1 + \rho_k^2)^{-1} (\rho_k N_1 + \widetilde{N}), \quad k = 1, 2.$$

Then for $X \in T_k$ we have $\widetilde{\nabla}_X Q_k = 0$ because of $A_1 X = \rho_k X$, (5.2) and (5.3), and so Q_k is a fixed point for M_k . Moreover, it is clear that

$$||Q_k - P_k||^2 = (1 + \rho_k^2)^{-1}$$

which means that P_k belongs to a sphere S_k with radius $(1 + \rho_k^2)^{-1/2}$ and center Q_k .

Next, we consider M_k , k=1,2, as submanifolds of S^{4m+3} . Since M_k is totally geodesic in M, it is clear that $A_Y^{(k)}=0$ where $A_Y^{(k)}$ is the shape operator of M_k in S^{4m+3} with respect to the tangent vector Y to M_j , $j \neq k$. This shows that the first normal space ([3]) of M_k is contained in $Span\{N_1,\ldots,N_p\}$. We now prove

LEMMA 5.1. $Span\{N_1, \ldots, N_p\}$ (p = 4m - n) is invariant under parallel translation with respect to the normal connection $D^{(k)}$ of M_k in S^{4m+3} .

PROOF. Since S^{4m+3} is of constant curvature 1, the equation (3.6) of Ricci implies

$$g([A_1, A_N]X, Y) = g(R_{XY}^{\perp} N_1, N) = 0$$

since $D_X N_1 = 0$. Hence $A_1 A_N = A_N A_1$ and so, for $X \in T_k$ we have $A_N X \in T_k$, that is,

$$(5.4) A_N T_k \subset T_k, \quad k = 1, 2,$$

for any normal vector N to M. On the other hand, for any vector field X tangent to M_k , we have

$$\overline{\nabla}_X N_{\alpha} = -A_{\alpha} X + D_X N_{\alpha}.$$

But $D_X N_{\alpha} \in Span\{N_1, \dots, N_p\}$ and $A_{\alpha}X \in T_k$ as a consequence of (5.4). Hence

$$D_X^{(k)}N_\alpha = D_XN_\alpha \in Span\{N_1, \dots, N_p\},\,$$

which completes the proof.

As a consequence of Lemma 5.1 we can apply Erbacher's reduction theorem ([3, p. 339]) and this yields that M_k belongs to a totally geodesic submanifold $S_k(1)$ of dimension $(dimM_k+4m-n)$ in S^{4m+3} . Therefore M_k belongs to the intersection of this $S_k(1)$ and the sphere $S_k((1 + \rho_k^2)^{-1/2}, Q_k)$ obtained above. Note that Q_k belongs to the Euclidean space of dimension $(dimM_k + p + 1)$ passing through O and containing $S_k(1)$. Since $(dimM_k + 4m - n)$ is a multiple of 4, we may conclude

THEOREM 5.2. Let M be an (n+3)-dimensional contact three CR submanifold of (p-1) contact three CR dimension in an (n+p+3)(n+p=4m)-dimensional unit sphere S^{4m+3} . If

$$A_1F = FA_1, \quad A_1G = GA_1, \quad A_1H = HA_1$$

and N_1 is parallel with respect to the normal connection, then M is locally a product $M_1 \times M_2$, where $M_i (i = 1, 2)$ belongs to some $(4r_i + 3)$ -dimensional sphere.

We next prove

LEMMA 5.3. Let M be an (n+3)-dimensional compact, minimal, contact three CR submanifold of (p-1) contact three CR dimension in S^{4m+3} . If N_1 is parallel with respect to the normal connection and the scalar curvature $\geq (n+1)(n+3)$ on M, then $A_1F = FA_1$, $A_1G = GA_1$, $A_1H = HA_1$ and $A_{\alpha} = 0$ ($\alpha = 2, \ldots, 4m-n$).

PROOF. The following integral formula is well known ([12]):

(5.5)
$$\int_{M} \{Ric(U,U) + \frac{1}{2} \|\mathcal{L}_{U}g\|^{2} - \|\nabla U\|^{2} - (divU)^{2} + Ric(V,V) + \frac{1}{2} \|\mathcal{L}_{V}g\|^{2} - \|\nabla V\|^{2} - (divV)^{2} + Ric(W,W) + \frac{1}{2} \|\mathcal{L}_{W}g\|^{2} - \|\nabla W\|^{2} - (divW)^{2}\} * 1 = 0,$$

where *1 denotes the volume element of M. Since S^{4m+3} is of constant curvature 1, the equation (3.4) of Gauss and (3.17) imply

(5.6)
$$Ric(U,U) = n + 2 + (trA_1)g(A_1U,U) - g(A_1^2U,U),$$
$$Ric(V,V) = n + 2 + (trA_1)g(A_1V,V) - g(A_1^2V,V),$$
$$Ric(W,W) = n + 2 + (trA_1)g(A_1W,W) - g(A_1^2W,W).$$

On the other hand, it follows from (3.10)-(3.12) that

(5.7)
$$divU = tr(FA_1) = 0, \quad divV = tr(GA_1) = 0,$$

 $divW = tr(HA_1) = 0.$

From (3.10)-(3.12), we also have

$$(\mathcal{L}_{U}g)(X,Y) = g(\nabla_{X}U,Y) + g(\nabla_{Y}U,X) = g((FA_{1} - A_{1}F)X,Y),$$

$$(\mathcal{L}_{V}g)(X,Y) = g(\nabla_{X}V,Y) + g(\nabla_{Y}V,X) = g((GA_{1} - A_{1}G)X,Y),$$

$$(\mathcal{L}_{W}g)(X,Y) = g(\nabla_{X}W,Y) + g(\nabla_{Y}W,X) = g((HA_{1} - A_{1}H)X,Y).$$

Using (2.5) and (3.10)-(3.12), we also have

(5.8)
$$\|\nabla U\|^2 = trA_1^2 - 1 - g(A_1^2U, U),$$

$$\|\nabla V\|^2 = trA_1^2 - 1 - g(A_1^2V, V),$$

$$\|\nabla V\|^2 = trA_1^2 - 1 - g(A_1^2V, V).$$

Since M is assumed to be minimal, $trA_{\alpha} = 0$ ($\alpha = 1, ..., 4m - n$). So the scalar curvature ρ is given by

(5.9)
$$\rho = (n+2)(n+3) - \sum_{\alpha=1}^{4m-n} tr A_{\alpha}^{2}.$$

Therefore, substituting (5.6)-(5.9) into (5.5), we obtain

$$\int_{M} \left\{ \frac{1}{2} (\|\mathcal{L}_{U}g\|^{2} + \|\mathcal{L}_{V}g\|^{2} + \|\mathcal{L}_{W}g\|^{2}) + 3\rho - 3(n+1)(n+3) + 3\sum_{\alpha=2}^{4m-n} tr A_{\alpha}^{2} \right\} * 1 = 0,$$

which together with the assumption $\rho \geq (n+1)(n+3)$ yields

$$\mathcal{L}_U g = 0$$
, $\mathcal{L}_V g = 0$, $\mathcal{L}_W g = 0$ and $tr A_\alpha^2 = 0$,

where $\alpha = 2, \dots, 4m - n$. Thus these give the required results. \square

For the submanifold M given in Lemma 5.3, we can easily see that its first normal space is contained in $Span\{N_1\}$ which is invariant under parallel translation with respect to the normal connection from our assumption. Thus we may apply Erbacher's reduction theorem and this yields that there is an (n+4)-dimensional totally geodesic unit sphere S^{n+4} such that $M \subset S^{n+4}$. Here we note that n+4 is of type 4r+3 for some positive integer r. Moreover, since the tangent space T_xS^{n+4} of the totally geodesic submanifold S^{n+4} at x in M is $T_xM \oplus Span\{N_1\}$, S^{n+4} is an invariant submanifold of S^{4m+3} with respect to the Sasakian three structure $\{\xi,\eta,\zeta\}$ (that is, ξ,η and ζ are all tangent to S^{n+4} and $\phi(T_xS^{n+4}) \subset T_xS^{n+4}$, $\psi(T_xS^{n+4}) \subset T_xS^{n+4}$ and $\theta(T_xS^{n+4}) \subset T_xS^{n+4}$ for any x in S^{n+4}), because of (2.1) and (2.3). Hence the submanifold M given in Lemma 5.3 can be regarded as a real hypersurface of S^{n+4} which is totally geodesic invariant submanifold of S^{4m+3} .

Tentatively we denote S^{n+4} by M' and by i_1 the immersion of M into M' and i_2 the totally geodesic immersion of M' onto S^{4m+3} . Then, from the Gauss equation (3.1), it follows that

$$(5.10) \qquad \nabla'_{i,X} i_1 Y = i_1 \nabla_X Y + h'(X,Y) = i_1 \nabla_X Y + g(A'X,Y) N',$$

where h' is the second fundamental form of M in M', A' is the corresponding shape operator and N' is a unit normal vector field to M in M'. Since $i = i_2 \circ i_1$, we have

(5.11)
$$\overline{\nabla}_{i_2 \circ i_1 X} i_2 \circ i_1 Y = i_2 \nabla'_{i_1 X} i_1 Y + \overline{h}(i_1 X, i_1 Y)$$
$$= i_2 (i_1 \nabla_X Y + g(A'X, Y) N')$$

because M' is totally geodesic in S^{4m+3} . Comparing (5.11) with (3.1), we easily see that

$$(5.12) N_1 = i_2 N', \quad A_1 = A'.$$

As M' is invariant submanifold of S^{4m+3} , for any $X' \in TM'$,

(5.13)
$$\phi i_2 X' = i_2 \phi' X', \quad \psi i_2 X' = i_2 \psi' X', \quad \theta i_2 X' = i_2 \theta' X'$$

is valid, where $\{\phi', \psi', \theta'\}$ is the induced Sasakian three structure of $M' = S^{n+4}$. Thus it follows from (2.3) that

$$\begin{aligned} \phi i X &= \phi i_2 \circ i_1 X = i_2 \phi' i_1 X = i_2 (i_1 F' X + u'(X) N') \\ &= i F' X + u'(X) i_2 N' = i F' X + u'(X) N_1, \\ \psi i X &= \psi i_2 \circ i_1 X = i_2 \psi' i_1 X = i_2 (i_1 G' X + v'(X) N') \\ &= i G' X + v'(X) i_2 N' = i G' X + v'(X) N_1, \\ \theta i X &= \theta i_2 \circ i_1 X = i_2 \theta' i_1 X = i_2 (i_1 H' X + w'(X) N') \\ &= i H' X + w'(X) i_2 N' = i H' X + w'(X) N_1. \end{aligned}$$

Comparing this equation with (2.3), we have F = F', $u' = u^1$; G = G', $v' = v^1$ and H = H', $w' = w^1$. By Lemma 5.3, we know that M is a real hypersurface of S^{n+4} which satisfies F'A' = A'F', G'A' = A'G' and H'A' = A'H'. Now applying a theorem due to Pak [10], we may conclude

THEOREM 5.4. Let M be an (n+3)-dimensional compact, minimal, contact three CR submanifold of (p-1) contact three CR dimension in S^{4m+3} . If N_1 is parallel with respect to the normal connection and the scalar curvature $\geq (n+1)(n+3)$ on M, then

$$M = S^{4r+3}(a) \times S^{4s+3}(b), \quad r+s = \frac{n-3}{4}.$$

References

- A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1886.
- [2] B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
- [3] J. Erbacher, Reduction of the codimension of an isometric immersion, J. differential Geometry 5 (1971), 333-340.
- [4] S. Ishihara and M. Konish, Fibred Riemannian spaces with Sasakian 3-structure, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, p. 179-194.
- [5] T. Kashiwada, A note on a Riemannian space with Sasakian 3-structure, Nat. Sci. Rep. of the Ochanomizu Univ. 22 (1971), 1-2.
- [6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I and II, Interscience Publishers, New York, London, Sydney, 1963 and 1969.
- [7] Y. Y. Kuo, On almost contact 3-structure, Tôhoku Math. J. 22 (1970), 325-332.
- [8] Y. Y. Kuo and S. Tachibana, On the distribution appeared in contact 3-structure, Taita J. of Math. 2 (1970), 17-24.
- [9] J.-H. Kwon and J. S. Pak, On some contact CR-submanifolds of an odd-dimensional unit sphere, preprint.
- [10] J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kōdai Math. Sem. Rep. 29 (1977), 22-61.
- [11] S. Tachibana and W. N. Yu, On a Riemannian space admitting more than one Sasakian structures, Tôhoku Math. J. 22 (1970), 536-540.
- [12] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., New York, 1970.
- [13] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston, Basel, Stuttgart, 1983.

Jung-Hwan Kwon
Department of Mathematics Education
Taegu University
Taegu 705-714, Korea
E-mail: jhkwon@biho.taegu.ac.kr

Jin Suk Pak
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail: jspak@bh.kyungpook.ac.kr