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ON CONTACT THREE CR SUBMANIFOLDS
OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

JUNG-HwaAN KWON AND JIN SuK Pak

ABSTRACT. We study (n+ 3)-dimensional contact three CR subman-
ifolds of a Riemannian manifold with Sasakian three structure and
investigate some characterizations of §47*+3(a) x §43+3(b) (a2 + b2 =
1, 4(r + 8) = n—3) as a contact three CR submanifold of a (4m + 3)-
dimensional unit sphere.

1. Introduction

Let S*™*3 be a (4m + 3)-dimensional unit sphere, that is,
S4m+3 — {q c Qm+1 , ”q” - 1},

where Q™1 is the real 4(m+1)-dimensional quaternionic number space.
For any point ¢ in §4™+3, we put

E=1q, n=Jq, (=Kg,

where {I, J, K} denotes the canonical quaternionic Kahler structure of
Q™*L. Then {£,7,(} becomes a Sasakian three structure, that is, &, 7
and ¢ are mutually orthogonal unit Killing vector fields which satisfy

vaX€ = g(X,f)Y - g(Y1 X)§7
(1.1) VyVxn =g(X,n)Y ~ g(Y, X)n,
VyVx(=g(X, Q)Y — g(¥,X)

Received February 14, 1998. Revised May 19, 1998.

1991 Mathematics Subject Classification: 53C40, 53C15.

Key words and phrases: contact three CR submanifold, contact three CR dimen-
sion, Sasakian three structure, (4m + 3)-dimensional unit sphere.

The first author was supported (in part) by the Taegu University Research Grant
and the second by BSRI-98-1404 and TGRC-KOSEF.



562 J.-H. Kwon and J. S. Pak

for any vector fields X, Y tangent tc S*™*3, where g denotes the canon-
ical metric on $4™+3 induced from that of Q™! and V the Riemannian
connection with respect to g. In this case, putting

(12) ¢X =—v—X§7 "/)X = VXU, 6X =VX<,

it follows that
¢§=0, ¢"7=07 9C=0,

(1.3) n=—-YC=¢, ¢(=-0=n, Y€=—¢n=¢(,
m,¢]=2¢, [¢,&]=2n, [£,n] =2¢

and

PP=-I+f®E Y =-I+f0n EP=-I+f®C
(14) Y0=¢+f,®¢ =9+ fQE ¢Y=0+f®n,
Op=—d+fc®n, ¢0=-—p+f@C pdp=—-0+f,QE,

where I denotes the identity transformation and

(1.5) fe(X)=9(X,8), fa(X)=9(X,m), [fo(X)=9(X,{)
(cf. [4,5,7,8,10]). Moreover, from (1.3) and (1.4), we have

Lep =0, Lnpdp=-20, Lep=2y,
L= —29, Ly0=28, Lcb=0,

where Lx denotes the Lie derivative with respect to X.

Let M be an (n+ 3)-dimensional submanifold tangent to the structure
vectors &, 7 and ¢ of S4™+3, If there exists a subbundle v of the normal
bundle TM+ such that

(1'7) Qvg C vz, YUz Cug, Bug Cuy,
(1.8) pvt Cc .M, v cT,M, OvycT,M
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for each z in M, where v+ is the complementary orthogonal subbundle
to v in TM+ and TM the tangent bundle of M, then the submanifold
is called a contact three CR submanifold of $*™*3 and the dimension of
v contact three CR dimension. A typical example of contact three CR
submanifold with zero contact three C R dimension is a real hypersurface.

In this paper we shall study (n + 3)-dimensional contact three CR
submanifolds with (p — 1) contact three CR dimension of $4™+3 where
p is 4m—n the codimension. In this case the maximal {¢, 1, 6}-invariant
subspace

Dy =T MN T, MNYT M N T, M

of T M has constant dimension n—3 because the orthogonal complement
Dj to D, in T, M has constant dimension 6 at any point z in M (for
details, see section 2).

We shall investigate some geometric characterizations of

S4r+3(a) X S4s+3(b) (az + b2 — 1, r+s= (’I’l _ 3)/4)

as a contact three C R submanifold of a (4m+3)-dimensional unit sphere.

2. Preliminaries

Let M be an (n + 3)-dimensional contact three CR submanifold in
a (4m + 3)-dimensional Riemannian manifold M with Sasakian three
structure {¢,7,¢} which satisfies (1.1). Then, by definition, we may set
vt = Span {N;} for a unit normal vector field Ny to M. Here and in
the sequel we use the same notations as shown in section 1. Put

(2.1) U=—¢Ny, V=-¢Ni, W =—0N.

Then from (1.3), (1.4) and (1.8) we can see that U, V, W are mutually
orthogonal unit tangent vector fields to M and satisfy

9§, U) =0, g(§V)=0, g(§,W)=0,
(2.2) gn,U)=0, g(nV)=0, g(nw)=0,
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Moreover £, 1, ¢, U, V and W are all contained in D;- and consequently
dim D > 6 at any point z in M. But we can prove that dim DL = 6
at any point z in M. In fact, if there is a non-zero vector S € Df
which is orthogonal to all of £, , {, U, V and W, then it is clear
that g(U,S) = 0 and thus g(Ny,¢S) = 0 because of (2.1). Hence, if
¢S € T, M+, then ¢S € v, and consequently it follows from (1.7) that
S € v, which is a contradiction. So ¢S € T, M. Similarly we can prove
that ¢S, ¢S, 0S € T, M, let say
Z]_ = d)S, Z2 == ’l/)S, Z3 = 0S.

Then ¢Z, = ¥Z, = 0Z3 = —S and consequently S € D,, which is
also a contradiction. Hence we have dim D} = 6. Therefore, for any
tangent vector field X and for a local orthonormal basis {Ng}a=1,...p
(p = 4m — n) of normal vectors to M, we have the following decompo-
sition in tangential and normal components:

(2.3) ¢X = FX+u'(X)N;, %X =GX + v (X)Ny,
06X = HX + w (X)) Ny,

(24) #N, = _Ua+P¢Na, YN = =V, + P¢Na7
ONy, = -W,+ PsN,, a=1,...,p.

It follows easily from (1.4) that {F,G,H} and {Py, Py, Py} are respec-
tively skew-symmetric linear endomorphisms acting on T, M and T, M*.
Since the Sasakian three structure {£,7n,({} is tangent to M, the equa-
tions (1.4), (2.3) and (2.4) imply

FiX = - X + fe(X)€+ Y (X)U1, uw!(FX)=0,

(2.5) G X = -X + f,(X)n++1(X)V1, 2Y(GX) =0,

H2X = =X + fe(X)¢ + wH (X)W1, w'(HX)=0,
GFX = —-HX + f(X)¢ +u' (X)W1, oY(FX)=-w'(X),
HFX = GX + fo(X)6 +u (X)W, w!(FX)=v!(X),
FGX = HX + fe(X)n+v}{(X)U1, «}(GX) = w!(X),
HGX = ~FX + fo(X)n+o/(X)W1, w'(GX) = —-u'(X),
FHX = ~GX + fe(X)¢(+ w'(X)Uy, «MHX) = —v}(X),
GHX = FX + fo(X)¢ +w*(X)Vy, Y (HX) = u}(X),

(2.6)
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(2.7) 9Ua, X) =t (X)b1a, 9(Va, X) = v'(X)d1a,
9(Wa, X) = wl(X)cSla, a=1,...,p,
which yields
9(U1, X) = u}(X), g(V1,X) = v'(X), g(W1, X) = w'(X),
Ua =0a Va=07 Wa=0, a=2a~~°apa
9(Ua, Ug) = bap — 9(PpNa, PsNpg),
9(Wo, Wg) = dap — g(PoNqo, Py Np).

(2.8)

From (1.3) and (2.3), it follows that

Fg=0,Gn=0, H( =0, Fn= -, F{ =n,

GE=( GC=-¢ H{=—n, Hn=¢,

u'(§) =0, u'(n) =0, u'(¢) =0, v'(§) =0, v'(n) =0,

v (¢) =0, w'(§) =0, w'(n) =0, w'({) = 0.

Using (1.4) and (2.1)-(2.4), we have
FU, =0, GV, =0, HW, =0, FV; = Wy,

(2.11) FWy = -V, GU, = =W, GW, =U,, HU, = V1,
HV, = -U;, P4N, =0, Py,N, =0, PyN, =0,

(2.10)

which together with (2.1) and (2.4) implies
U=U,, V=V, W=W,.
Therefore we may put
P P
(2.12) PyNo =) PYNg, PyN,=> FYNg,
p=2 p=2

p
PaNo =3 PisNs, 0=2,....p,
p=2
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where (Pgﬂ) (P ﬁ) and (P ﬁ) are skew-symmetric matrices which satisfy

(213) Z Pg'ypjﬁ = aﬁ7 Z Pg'ypjfﬁ - aﬂa
y=2 y=2

Z ’Yﬁ = —daﬂ-

3. Fundamental equations for contact three CR submanifold

Let M be as in section 2. We denote by V the Levi-Civita connection
on M and denote by D the normal connection induced from V in TM+.
Then the Gauss and Weingarten equations are of the form

(3.1) VxY =VxY +h(X,Y),
(3.2) VxNg=-AxX +DxN,, a=1,...,p
for any tangent vector fields X,Y to M. Here h denotes the second

fundamental form and A, is the shape operator corresponding to N,.
They are related by

h(X,Y) = Xp: 9(AaX,Y)Ny.

a=1

Furthermore we may put

P
(3.3) DxNo =Y _ 545(X)Np,
=1

where (sqg) is the skew-symmetric matrix of connection forms of D.
Finally the equations of Gauss, Codazzi and Ricci (cf. [2,6]) are given
by
(3.4) g(nyZ, W) = g(nyZ, VV)

+> {9(AaX, Z)g(AaY, W) —~ g(AaY, Z)g(AaX, W)},
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(3.5) 9(Rxy Z,No) = 9((VxAs)Y = (VyAu)X, Z)
+ Z{g(AﬂY, Z)sﬂa(X) - g(AﬂX’ Z)Sﬁa(Y)}a
B

(36) g(RX}’NaaNﬂ) :g(RjL{YNaaNﬂ)+g([AﬁaAa]X,Y)

for any tangent vector fields X,Y, Z to M, where R and R denote the
Riemannian curvature tensor of M and M respectively and R is the
curvature tensor of the normal connection D.

Differentiating (2.3) covariantly and using (1.1), (1.2), (2.8), (2.11),
(3.1) and (3.2), we have

(VyF)X = g(X,8)Y - g(X,Y)§ — g(A1 X, Y)U + v’ (X)A,Y,

(3.7) (Vyu)X = —g(A FX,Y),

(58) (VYG)X = g(X,n)Y — g(X,Y)n - g(A1X,Y)V + v (X)A,Y,
' (Vyv))X = —g(4,GX,Y),

39) (VyH)X = g(X,Q)Y — g(X,Y)¢ — (A1 X, Y)W + w'(X)A,Y,

(Vywh)X = —g(4;HX,Y).

Differentiating (2.1) covariantly and using (1.1), (1.2), (2.8) and (3.1)-
(3.3), we have

VxU =FA{ X,

(3.10) { p s
g(AaU’X)=_2ﬂ=2slﬂ(X)Pﬂaa a:Z,---,p,
VxV =GA1 X,

sy | AT ’
g(AaV1X)=_Zﬁ=231ﬁ(X)Pga, a=2,...,p,
VxW =HA X,

(3.12) { X R ,
g(AW, X)=-3"%_, 518(X) PGy @=2,...,p.
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On the other hand, since &, 7 and  are tangent to M, it follows from
(1.2) that

Vx€=FX,
(3.13) 9(A:€,X) =ul(X), thatis, A&=U,
Al =0, a=2,...,p,

VX"’ = GX7
(3.14) g(An, X) = v1(X), thatis, Ain=1V,
Aan=0, a=2,...,p,

VXC=HX,
(315) g(A1C7X) :wl(X), that iS, AIC:VV’
A=0, a=2,...,p.

In the rest of this paper we suppose that M is of constant curvature 1
and that N, is parallel with respect to the normal connection D. Hence
it follows from (3.3) that

(3.16) sig=0, B=2,...,p,
which together with (3.10)-(3.12) implies
(3.17) AU=0, AV =0, AW=0, a=2,...,p.
Since the curvature tensor R of M is of the form
RxyZ =g(Y,2)X - g(X, 2)Y,
the equations (3.5) and (3,16) give

(3.18) (VxA)Y — (VyADX = 0.
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4. Some properties of the shape operator A,

In this section we assume that A; and {F,G, H} are commute on M,
that is,

(4.1) AF =FA;, AG=GA;, A;H=HA,.
Then (2.11) and (4.1) yield
FAU=0, GAV =0, HAW=0,
from which together with (2.5) and (3.13)-(3.15), it follows that

A1U=§+/\1U, A1V= 'f)+/\2‘/,
AW =(+ AW,

where Ay = u'(AU) = g(A1U,U), X2 = v'(A1V) = g(A1V,V) and
A = wl (A W) = g(A1W, W). By the way, from (2.6) and (4.1) we have

A1 = ut(AU) = v (HALU) = v} (A, HU),

which and (2.11) imply A\; = v1(41V) = Ae. Similarly we have A\; =
A2 = A3 and consequently

(42) AU=E+ANU, AV =n+AV, AW =(+W,

where here and in the sequel we put A = Aj.
Differentiating (4.2) covariantly and using (3.10) and (3.13), we obtain

(VxA)U + A)FAI X =FX + (XU + A\FA1 X
and therefore

(4.3) 9(VxA)Y,U) =g(A}X,FY) + g(FX,Y)
+ (XAN)g(U,Y) + A\g(FA1 X,Y)

with the aid of (4.1). Moreover, from (3.18), (4.1) and (4.3), it follows
that

(4.4)  29(A3IX,FY)+29(FX,Y)
+ (XN)g(U,Y) — (YN g(U, X) +2Xg(FA1 X,Y) = 0.
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Putting X =U or Y = U in (4.4), we may have
(4.5) XA = (UNu!(X), Y= (UNu(Y)
because of (2.11) and (4.1), and hence (4.4) reduces to
(4.6) FA2X = \FA X + FX.
On the other hand, from the first equation of (4.5), it is clear that
Vx(grad A) = (Xp)U + uFA X,
where p = UA. Since ¢(Vx(grad A),Y) = g(Vy(grad A), X), we have
(4.7) (Xp)ul(Y) = (Yp)u' (X) + 2ug(FA1X,Y) = 0,
from which, putting X = U or Y = U, we find
Xp=Upu(X), Yp=Upu'(Y).

Hence (4.7) gives uF A1 X = 0, from which together with (4.1) and (4.6)
we can easily see that p must be zero and A is constant. Now we prove

LEMMA 4.1. Let M be an (n + 3)-dimensional contact three CR
submanifold with (p — 1) contact three CR dimension in an (n+ p + 3)-
dimensional Riemannian manifold with Sasakian three structure and of
constant curvature 1. If

A]_F = FAl, A]_G = GAl, A]_H = HA1

and N, is parallel with respect to the normal connection, then

(4.8) A2 = 2A; +1,
(4.9) VA; =0,

where A = ul(A,U) is constant.
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PRrROOF. Applying F to (4.6) and using (2.5), (3.13) and (4.2), we
have

(4.10) A2X = AA1 X + X,

which implies (4.8). Next, differentiating (4.10) covariantly and using
the fact that A is constant, we have

(4.11) (VyAl)AlX + Al(VyA1)X = /\(VyAl)X,
from which, taking account of (3.18), we obtain

(VyA1)A 1 X =(VxA)ALY,
and consequently

g((Vy A1) A1 X, Z) = g((Vx A1) A1Y, Z) = g(A1(Vx A1) Z,Y).

Since g((VyA1)A1X, Z) = g((VzA1)A1 X, Y), the above equation
yields g((Vy A1) A1 X, Z) = g(A1(V x A, )Y, Z), which implies

(VyA1)A1 X = A1 (VyADX.
Thus (4.11) reduces to 24;(Vy A1)X = A(Vy A1) X, from which, apply-

ing A; and using (4.8), we have A—zz;lﬁ(VyAl)X = 0 and consequently
(4.9) follows. a

Let p be an cigenvalue of A;. Then from (4.8) it is clear that p satisfies
p?—Ap—1 = 0 and consequently A; has exactly two constant eigenvalues

pr=M+ VA +4)/2, pa=(A-VA2+9)/2.

In fact, since px2 — Apx —1 =0 (k = 1,2), (3.13)-(3.15) and (4.2) imply
A1(p1U + &) = p1(p1U +§), Ai(p2U +€) = p2(p2U + &),
Ai(p1V + 1) = pu(pV +1),  Ai(p2V +n) = p2(p2V + 1),
A1(piW + Q) = p1(pW + (),  A1(p2W + () = p2(p2W + ().

Since the eigenvalues are constant, the eigenspaces define distributions

on M. We denote them by T for £ = 1,2, that is,

T, ={X€eTM : A1 X =pX}.

By means of (4.9), we can easily see that the distribution Tj, T, are
both involutive and that the integral submanifolds My of Ty, k = 1,2,
are totally geodesic and parallel along T}, j # k.
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5. Main results

In this section let M be the (4m + 3)-dimensional unit sphere S4™+3,
as already shown in section 1, in R*™+1) with center at the origin O
of R¥*m™+1), Let N be the inward unit normal to S*™+3. Then the
equations of Gauss and Weingarten for $#™*3 are given by

(5.1) VxY =VxY + g(X,Y)N,
(5.2) 6){& =-X

for any vector fields X, Y tangent to S*™+3, where V denotes the Eu-
clidean connection of R*™+1)_ In particular, for Y = N; it follows from
(3.2) and (3.3) with a = 1, (3.16) and (5.1) that

(5.3) VxNi =VxN, +g(X,N;)N

D
=M1 X+ s1a(X)Na +g(X, N)N
a=1

= —AIX

for any tangent vector field X to M.
From now on, we consider the integral submanifolds My, k = 1,2.
Let P be the position vector of My in R*™+1) and put

Qk = P+ (1+ pe2) HpeN1 + N), k=1,2.

Then for X € Ti we have 6ka = 0 because of 4;X = p X, (5.2) and
(5.3), and so @y is a fixed point for M. Moreover, it is clear that

1Qk — Pl = 1+ pi®) ™

which means that Py belongs to a sphere Sy with radius (1 + pg?)
and center Q.

Next, we consider My, k = 1,2, as submanifolds of §4™+3. Since
M, is totally geodesic in M, it is clear that Ay ¥} = 0 where Ay is
the shape operator of M in S*™*3 with respect to the tangent vector
Y to Mj, j # k. This shows that the first normal space ([3]) of M is
contained in Span{Ny,..., N,}. We now prove

—1/2
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LEMMA 5.1. Span{Ny,...,Np} (p = 4m — n) is invariant under par-

allel translation with respect to the normal connection D) of My, in
S4m+3.

PROOF. Since $4™*3 is of constant curvature 1, the equation (3.6) of
Ricci implies
g([AlyAN]X, Y) = g(R_gb(YNhN) =0
since DxN; = 0. Hence AjAy = AnA; and so, for X € T; we have
ANX € Ty, that is,
(5.4) ANT, C T, k=1,2,

for any normal vector N to M. On the other hand, for any vector field
X tangent to My, we have

VXNO, = -A X + Dy N,.

But Dx N, € Span{Ny,...,Np} and A, X € Ty as a consequence of
(5.4). Hence

Dx®™N, = DxN, € Span{Ny,...,N,},
which completes the proof. O

As a consequence of Lemma 5.1 we can apply Erbacher’s reduction
theorem ([3, p. 339]) and this yields that M belongs to a totally geodesic
submanifold Sk(1) of dimension (dimM;, +4m —n) in §4™+3, Therefore
My, belongs to the intersection of this Si(1) and the sphere Si((1 +
pr?)~ Y2, Qy) obtained above. Note that Q belongs to the Euclidean
space of dimension (dimMj + p + 1) passing through O and containing
Sk(1). Since (dimM} + 4m — n) is a multiple of 4, we may conclude

THEOREM 5.2. Let M be an (n + 3)-dimensional contact three CR
submanifold of (p—1) contact three C R dimension in an (n+p+3)(n+p =
4m)-dimensional unit sphere S*™+3, If

A\F=FA;, AG=GA,, AlH=HA

and N; is parallel with respect to the normal connection, then M is
locally a product My x My, where M;(i = 1, 2) belongs to some (4r; +3)-
dimensional sphere.

We next prove
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LEMMA 5.3. Let M be an (n + 3)-dimensional compact, minimal,
contact three CR submanifold of (p — 1) contact three CR dimension in
S$4m+3_ If N, is parallel with respect to the normal connection and the
scalar curvature> (n+ 1)(n+3) on M, then A1 F = FA,, A;G = GA,,
AJH=HA, and A, =0 (a=2,...,4m — n).

PRrooOF. The following integral formula is well known ([12]):
65 [ {RicW.0) + G lcugl? - [TV - (@io0)’
+ Rie(V, V) + 5llLvgl?  [VVI? - (divV)?
+ Ric(W, W) + 3| Lwgll* ~ VW — (dioW)?} 1 =0,

where *1 denotes the volume element of M. Since S4™+3 is of constant
curvature 1, the equation (3.4) of Gauss and (3.17) imply

Ric(U,U) =n+ 2+ (trA1)g(A,U,U) — g(A2U,U),
(5.6) Ric(V,V) =n+2+ (trd1)g(A1V,V) — g(A}V, V),
Ric(W,W) = n + 2 + (trA1)g(A1W, W) — g(A2W, W).
On the other hand, it follows from (3.10)-(3.12) that
(5.7) divU = tr(FA;) =0, divV = tr(GA,) =0,
divW =tr(HA;) = 0.
From (3.10)-(3.12), we also have
(Lvg)(X,Y) =9g(VxU,Y) +g(VyU, X) = g((FA1 - AIF)X,Y),
(EVQ)(X, Y) = g(VXV> Y) + g(VYV7X) = g((GAl - AlG)Xa Y)7
(Lwg)(X,Y) = g(VxW,Y) + g(VyW, X) = g((HA, - ALH)X,Y).

Using (2.5) and (3.10)-(3.12), we also have
“VU”2 = tT‘A% -1- g(A%Ua U)7
(5.8) |VV|? = trAl — 1 - g(AV, V),
IVVI2 = trA2 — 1 - g(43V, V).
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Since M is assumed to be minimal, trd, =0 (a = 1,...,4m — n). So
the scalar curvature p is given by

4m—n
(5.9) p=(n+2)(n+3)— ) trAl.

a=1

Therefore, substituting (5.6)-(5.9) into (5.5), we obtain

1
| G UEul? +£val? + 1£wal?)

am-—n
+3p=3(n+1)(n+3)+3 Y trAl}x1=0,

a=2

which together with the assumption p > (n + 1)(n + 3) yields
Lyg=0, Lyg=0, Lwg=0 and trAi =0,
where o = 2,...,4m — n. Thus these give the required results. a

For the submanifold M given in Lemma 5.3, we can easily see that
its first normal space is contained in Span{N;} which is invariant un-
der parallel translation with respect to the normal connection from our
assumption. Thus we may apply Erbacher’s reduction theorem and this
yields that there is an (n + 4)-dimensional totally geodesic unit sphere
S™+4 such that M C S™t4. Here we note that n + 4 is of type 4r + 3 for
some positive integer r. Moreover, since the tangent space T,S™t* of
the totally geodesic submanifold $"** at z in M is T, M & Span{N;},
S™*4 is an invariant submanifold of S4™*3 with respect to the Sasakian
three structure {&,7,¢} (that is, £,  and ¢ are all tangent to S™+* and
H(T,S™4) C TS+, (T, S"+4) c T,S™t* and (T, S"*+*) c T,Sn+*
for any z in S™**), because of (2.1) and (2.3). Hence the submanifold
M given in Lemma 5.3 can be regarded as a real hypersurface of Sn+4
which is totally geodesic invariant submanifold of S4™+3,

Tentatively we denote S™t* by M’ and by i; the immersion of M
into M’ and 45 the totally geodesic immersion of M’ onto S4™*3, Then,
from the Gauss equation (3.1), it follows that

(5.10)  Vixi1Y =i VxY +h(X,Y) =i;VxY + g(4'X,Y)N’,
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where h’ is the second fundamental form of M in M’, A’ is the corre-
sponding shape operator and N’ is a unit normal vector field to M in
M'. Since ¢ = i3 0 41, we have
(5.11) —V—igoilxi2 011Y = i2V§1Xi1Y+E(i1X,i1Y)
=iy (5 VXY + g(A'X,YIN')
because M’ is totally geodesic in §4™+3. Comparing (5.11) with (3.1),
we easily see that
(5.12) Ny =i,N', A=A
As M’ is invariant submanifold of $4™+3, for any X’ € TM’,
(5.13) Gin X' = ird' X', inX' = ig)' X', iz X' = ir0'X'
is valid, where {¢’,¢’,0'} is the induced Sasakian three structure of
M’ = S™*+*. Thus it follows from (2.3) that
MX = drgo1 X = i2¢,i1X = ig(ilF/X + UI(X)N,)
= ZF,X + u'(X)igN’ = 'LFIX + ’U,’(X)Nl,
PiX = iz 011 X = isd'i1 X = i2(12G'X + v'(X)N')
=1iG'X +v'(X)iaN' = iG' X + v'(X) Ny,
0iX = 0iy 0 i1 X = is8'i1X = (i1 H'X + w'(X)N')
=iH'X +w' (X)ieN' = iH'X + w'(X)N;.
Comparing this equation with (2.3), we have F = F/, v/ = u!; G = G',
v/ = vl and H = H', w = w!. By Lemma 5.3, we know that M is
a real hypersurface of S"** which satisfies F'A’ = A'F', G’'A' = A'G’

and H'A’ = A’H’. Now applying a theorem due to Pak [10], we may
conclude

THEOREM 5.4. Let M be an (n + 3)-dimensional compact, minimal,
contact three CR submanifold of (p — 1) contact three CR dimension in
S§4m+3_ If Ny is parallel with respect to the normal connection and the
scalar curvature> (n + 1)(n + 3) on M, then

n-3

M= S4r+3(a) x S4s+3(b), r4s= _4_
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