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(n + 1)-DIMENSIONAL CONTACT
CR-SUBMANIFOLDS OF (n—1) CONTACT
CR-DIMENSION IN A SASAKIAN SPACE FORM

Jung-HwaN KwoN* AND JIN SuK PAK

ABSTRACT. In this paper we study (n + 1)-dimensional contact
C R-submanifolds of (n — 1) contact CR-dimension immersed in a
Sasakian space form M2™+1(c) (2m = n+p, p > 0), and especially
determine such submanifolds under additional condition concerning
with shape operator.

1. Introduction

Let M?™*1(c) be a (2m + 1)-dimensional Sasakian space form with
Sasakian structure (¢,£,m,9). Then by definition([9]) it follows that

W) ¢*X =X +0(X)E, ¢¢=0, n(¢X)=0, n(¢)=1,
3(6X,¢Y) =39(X,Y) —n(X)n(Y), n(X)=79(X,{)

for any vector fields X, Y tangent to M2?™+1(c). Denoting by V the
Levi-Civita connection on M?™+1(c), we have

(1.3) (Vx9)Y = -g(X,Y)§ +n(Y)X.

Moreover, since M?*™+1(c) is of constant ¢-sectional curvature c, its
curvature tensor R has the form
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FavZ = 22 (50, 2)X (X, 2)¥} - S (Y )m(2)X

(1.4) —(X)N(Z2)Y +n(X)a(Y, Z)¢ — n(Y)g(X, 2)¢
—§(oY, 2)$X +3(6X, Z)dY + 25(¢X,Y)$Z}

for any vector fields X,Y, Z tangent to M?™*1(c).

Let M be an (n + 1)-dimensional contact C R-submanifold of (n — 1)
contact CR-dimension isometrically immersed in M*™*1(c) (2m =n +
p, p > 0). Then, by definition([7]) it follows that M is tangent to the
structure vector field £ and the ¢-invariant subspace

D, := Ty M N ¢T, M

of the tangent space T, M of M at x in M has constant dimension 7 — 1
everywhere. So there is a unit tangent vector field U; to M, which is
orthogonal to £ and satisfies

D, :=Span{{, U1} "z € M,

where D is the complementary orthogonal subspace to Dy, in Ty M. We
now put

(15) Nl = ¢U1
Then N; is a unit normal vector field to M and
¢T, M C T, M @ Span{N; }

at each point z in M. Hence we have, for any tangent vector field X
and for a local orthonormal basis {N1, Ny }a=2 ..., of normal vectors to
M, the following decomposition in tangential and normal components :

(1.6) ¢X = FX +u'(X)Ny,
(1.7) ¢No = —Uy+ PNy, a=1,...,p.
By means of (1.1) we can easily show that F' and P are skew-symmetric

linear endomorphisms acting on T, M and T, M~ respectively, where
T,M+* denotes the normal space of M at z in M.
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We first notice that |
(1.8) ¢N, = Uy,
which is a direct consequence of (1.1), (1.5) and
(1.9) n(U1) =3g(£,U1) =0.
Thus (1.7) and (1.8) imply
(1.10) PN, =0.

Since the structure vector field ¢ is tangent to M, (1.1), (1.6) and
(1.7) imply

(111) 9(FUq, X) = —u' (X)g(N1, PNa),
(1'12) g(UaaUﬁ) = 5045 - g(PNa,PNﬁ),

where here and in the sequel g denotes the Riemannian metric induced
from g on M. We can also find

9(Uq, X) = u!(X)d14
and consequently
(1.13) gU, X) =u!(X), Uy=0, a=2,...,p.
Furthermore from (1.1) and (1.6) it is clear that
(1.14) F¢e=0, vl =0
Also, from (1.5) and (1.6) it follows that
(1.15) FU, =0, «'(Up) =1,

which are also derived from (1.10) and (1.11) with o = 1. The equations
(1.10), (1.12) and (1.13) also yield

(116) g(U17U1) = 17
(1.17) g(PNo, PNg) =605, 2<a,8<p.
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Thus, putting

p
PNy =) PusNs, a=2,...,p,
p=2

we have
P
(1.18) > PayPyg=—0ap, @,8=2,...,p
y=2

and (P,p) is a skew-symmetric matrix.
Applying ¢ to (1.6) and using (1.1), (1.6) itself and (1.8), we have

(1.19) F2X = - X +n(X)¢ + 1 (X)Uq,
(1.20) u(FX)=0.

The above results (1.9), (1.13)-(1.16) and (1.19)-(1.20) tell us that M
admits the so-called (f,g,u,v, \)-structure with f = F, u =u!, v =19
and A\ = O(for the definition of (f, g, u, v, A)-structure, see [11]). Hence
dimM is even. Recently Kwon and Pak [7] studied the submanifold M
with normal (f, g, u, v, A)-structure (f = F, u = u!, v =1, A = 0) when
the ambient manifold M?™*!(c) is a unit (2m + 1)-sphere S>™*! and
proved

THEOREM K-P. Let M be an (n + 1)-dimensional contact C R- sub-
manifold of (n — 1) contact CR-dimension isometrically immersed in
8§?m+1 (2m =n +p, p > 0) and let the normal field Ny be parallel with
respect to the normal connection induced from the Levi-Civita connec-
tion of S?™*1 on the normal bundle of M. If AJF = FA; on M, then
M is locally a product of My x My where M, and M, belong to some
odd-dimensional spheres and A, is the shape operator corresponding to
Ny.

In this paper we shall study (n + 1)-dimensional contact C'R- sub-
manifolds of (n — 1) contact CR-dimension isometrically immersed in
M?™*1(c) and prove the following theorems as improvements of Theo-
rem K-P :

THEOREM 1. Let M be an (n+ 1)-dimensional contact C R- subman-
ifold of (n — 1) contact C R-dimension isometrically immersed in S*™+1
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(2m =n+p, p > 0) and let the normal field N; be parallel with respect
to the normal connection. If Ly, H =0 on M and g(A,U;,U;) #0 at a
point of M, then M is locally a product of My x My where M, and M,
belong to some odd-dimensional spheres and Ly, denotes the Lie deriva-
tion in the direction of U, H being defined by H(X,Y) := g(A: X,Y).

THEOREM 2. Let M be as in Theorem 1. If L7, A; = 0 on M, then
M is locally a product of My x My where M; and M> belong to some
odd-dimensional spheres.

2. Preliminaries

We first let M be as in section 1 and use the same notation as shown
in that section. Denoting by V the Levi-Civita connection induced from
V on M, the Gauss and Weingartan equations are of the form

VxY =VxY +h(X)Y),
(2.2) VxNy=—-A,X+DxN,, a=1,...,p,

respectively. Here D denotes the normal connection induced from V in
the normal bundle TM+ of M, and h and A, the second fundamental
form and the shape operator corresponding to N, respectively. It is
clear that h and A, are related by

P
(2:3) h(X,Y) =) g(AaX,Y)N,.
a=1
Especially we put
P
(2.4) DxNo =) sas(X)Ng,

p=1

where (so3) is the skew-symmetric matrix of connection forms of D.
Differentiating (1.6) and (1.7) covariantly and using (1.2), (1.3), (1.6)-
(1.7) themselves and (2.1)-(2.2), we can easily obtain

(VxF)Y = —g(X,Y){+n(Y)X

2.5
( ) —g(AlXaY)Ul +’U,1(Y)A1X,
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(2.6) (Vxu')Y = g(FA1 X,Y),
VxUy = FA X,
» _
(2.8) 9(Aaly, X) = =) 515(X)Psa, @ =2,...,p.
B=2

Since the structure vector field £ is tangent to M, (1.2), (1.6), (2.1)
and (2.3) imply

(2.9) V¢ =FX,
(2.10) 9(A1€, X) = v (X), that is, A€ =1y,
(2.11) Al =0, a=2,...p

In-the rest of this paper we assume that the normal field N1 is parallel
with respect to the normal connection D. Hence (2.4) yields

(2.12) Sa1 =0, a=2,...,p,
from which together with (2.8), it follows that
(2.13) AU =0, a=2,...,p.

On the other hand, the ambient manifold M2™*1(c) is of constant
¢-sectional curvature ¢ and so it follows from (1.4) that the equation of
Codazzi is of the form

(2.14) (VxA)Y — (VyA)X

=%{u1(X)FY ~ W (Y)FX — 29(FX,Y)Ui},

(2.14) (VxAl)Y — (VyAd)X

r
= {3pa(Y)AsX — spa(X)AgY}, a=2,...,p.
B=2

From now on we prepare some algebraic identities for later use. We
set

(2.15) V= Vy, U,
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which is equivalent to
(2.15) V=FAU

because of (2.7). Then, from (1.14), (1.15), (1.19) and (2.10) it follows
that

(2.17) FV = —AiUy + £ + ol

where we put

(2.18) a=g(AU,Up) =u (A Uy), B=g(A%U,U,).
Moreover, by using (2.10), (2.16) and (2.17) we can show that
(2.19) 9(A1V,U1) =0, g(A1V,§) =0.

Also (1.13), (1.19), (2.7), (2.9), (2.16) and (2.17) yield

(2.20) u(VxV) = vl (X) + oul (4; X) — ul (A2X),
(2.21) n(VxV) = n(X) + oau* (X) — u' (4: X).

On the other hand it is clear from (2.5), (2.7) and (2.10) that

VyVxU; = — g(4: X, V)€ +ul(X)Y — g(A2X, YU,
+ ul (A]_X)A]_Y + F(VYAl)X + FAleX,

from which, putting X = U; and making use of (1.15), (2.7), (2.15) and
(2.18), we obtain

(2.22) VyV = —u (A1) + Y —u (A2Y)U) + aA)Y
+ F(VyA;,)Uy + FA FAY.

We now take an orthonormal basis {ej,...,e,+1} of tangent vectors to
M as follow :

e1:=¢&, ex:=Uj, exqr1 :=Fes, ..., enq1 = Fey,
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where k = 2 + (n — 1)/2. Then we can easily verify that

n+1
divV => " g(Ve, V)

=1
=1-F%2+a®+2(k—2) + altrd; - a)
k k
+ Zg((VFeiAl)ei — (VeiAl)Fei, Ul) + 2ZQ(FA1FA1€1,67;)

=3 =3

with the help of (1.9), (1.14), (1.15), (1.19), (2.10), (2.18) and (2.22)
By the way, as a direct consequence of (2.14), we have

k

> 9(Vre Ar)ei — (Ve, A)Fe;, Uy) =
=3

k—2

(c-1)

and consequently

(2.23) divV =2k — 3+ =L (k= 2) — B+ a(trA)
k
+2 ZQ(AIFAlFei, ei).
1=3

On the other hand, a simple computation by using (2.7) implies

|Lu,gl|? = ||FA1 — AL F||?

n+1
=Y g((FA — A1F)(FA, — A1F)'e; e)
=1
k
=4) g(A1F A Fe;,e;) +2(trA] — 1 - B),
=3

from which and (2.21) it follows that

c—1

(k—2)
+2(k — 1) + aftrA4;) — trA2.

(2.24) divV =%||FA1 — A F|* +
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Differentiating (2.17) covariantly and taking account of (2.5), (2.7),
(2.9) and (2.16), we can easily show that

(2.25) g(X, V)§+g(A1X, V)Ul —FVxV
= (VXAl)Ul +A1FA1X —FX - (Xa)U1 - aFAlX

and consequently

(2:26) 9((VxA1)U1,€) = (X, V),
(2.27) g((VXAl)Ul, Ul) = 2g(A1X, V) + Xa.

3. Proof of Theorem 1

In this section we shall give the proof of Theorem 1 stated in section
1. We first suppose that

(3.1) Ly, H =0,
where H is a tensor field of type (0,2) defined by
H(X)Y):=g(A X,)Y).
We notice that
(Lv, H)(X,Y) = g((Vu, 41)X,Y)

because of (2.7). Therefore the condition (3.1) is equivalent to Vi, A,
= 0, from which and (2.14) with Y = U; we have

(3.2) (Vx AU, = —£=1

Substituting (3.2) into (2.26) and using (1.14), we have g(X,V) = 0,
that is, V' = 0, which together with (2.27) and (3.2) yields a=constant.
Combining those results with (2.25), we can find that o(FA; — A, F) =0
on M.

Thus we have the following Proposition 1, which together with The-
orem K-P implies Theorem 1.

FX.

PROPOSITION 1. Let M be an (n+ 1)-dimensional contact CR- sub-
manifold of (n — 1) contact CR-dimension isometrically immersed in
a Sasakian space form M?*™*1(c) and let the normal field Ny be par-
allel with respect to the normal connection. If Ly,H = 0 on M and
g(A1U1,Uy) # 0 at a point of M, then the vector field U is a Killing
one, or equivalently FA; = A, F on M. '

REMARK 1. Let M be as in Proposition 1. Then it can be easily
shown that £, H = 0 identically on M.
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4. Proof of Theorem 2

In order to give the proof of Theorem 2 stated in section 1, we assume
that
(4.1) Ly, A =0.
Since (2.7) and (2.14) with Y = U; imply

c—1

(Cu, A1)X = (Vx AUy + ——FX — FA2X + A\ FA X,

(4.1) is equivalent to

(4.2) (VAU = ~SZ2FX 4 FAZX — A\ FALX,
which together with (1.14), (1.15), (2.10) and (2.15) gives
(4.3) 9(Vx AU, Uh) = g(A1 X, V),

(4.4) 9((Vx A1)U1,€) = 0.

Hence it follows from (2.24) and (4.4) that V = 0 and consequently
a=constant. Substituting (4.2) into (2.25) and taking account of those
results, we have

c+3

4
from which, applying F' and using (2.20)-(2.21) with V =0,
c+3

4

FX —FA?X 4+ oFA; X =0,

{X — o' (X)U1 — n(X)E} + u" (X)U1 +n(X)§
e A%X + aA1X =0.

Considering the adapted orthonormal basis {ei,...,€en+1} as shown in
section 2 and taking the trace of the last equation, we can easily see that

2(k-1)+ C—;l(k —2) + aftrd;) — trA? =0,

which and (2.24) with V = 0 give |[FA; — A1 F||2 =0.
Thus we have the following Proposition 2, which together with The-
orem K-P implies Theorem 2.

PROPOSITION 2. Let M be as in Proposition 1. If Ly, Ay =0 on M,
then the vector field U, is a Killing one.

REMARK 2. On the submanifold M as in Proposition 1, it holds
identically that LA = 0.
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