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CERTAIN CONTACT CR-SUBMANIFOLDS OF AN
ODD-DIMENSIONAL UNIT SPHERE

HyAaNG Sook KIM AND JIN Suk Pax!

ABSTRACT. We study an (n+1)(n > 3)-dimensional contact C'R-subman-
ifold of (n—1) contact C' R-dimension in a (2m+1)-unit sphere S2™+1 and
to determine such submanifolds under conditions concerning the second
fundamental form and the induced almost contact structure.

1. Introduction

Let $*™*1 be a (2m+1)-unit sphere in the complex (m-+1)-space C™*!. For
any point z € §?m*1 we put ¢ = Jz, where J denotes the complex structure
of C™*1. Denoting by 7 the orthogonal projection : T,C™+1 — T,82m+1
and putting ¢ = 7o J, we can see that the aggregate (¢,£,7,g) is a Sasakian
structure on S2™*1 where g is the standard metric on S?™*! induced from
that of C™*! and 5 is a 1-form dual to . Hence S?™*! can be considered as
a Sasakian manifold of constant curvature 1 (cf. [1, 2, 4, 5, 6, 8]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field £ of $?™*+1 and denote by D, the ¢-invariant subspace T, M N ¢T, M of
the tangent space T,M of M at z in M. Then £ cannot be contained in D,
at any point z in M (cf. [5]). Thus the assumption dimD; being constant
and equal to 2 at each point z in M yields that M can be dealt with a contact
C R-submanifold in the sense of Yano-Kon (cf. [5, 6, 8]), where D denotes the
complementary orthogonal subspace to D, in T, M. In fact, if there exists a
non-zero vector U which is orthogonal to £ and contained in Dy, then N := ¢U
must be normal to M.

In this point of view, the present authors, Kwon and Kim ([6]) studied (n+1)-
dimensional contact C'R-submanifolds of maximal contact CR-dimension in
S§2m+1 namely, those with dim D, = n — 1 at each point z in M and proved

Theorem P-K. Let M be an (n+ 1)-dimensional contact CR-submanifold of
(n — 1) contact CR-dimension immersed in a (2m + 1)-unit sphere S>™*1. If
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the distinguished normal vector field N is parallel with respect to the normal
connection and the equality appeared in (3.1) holds on M, then M is locally
isometric to

§2mtl(r) x 822 (ry) (12 413 = 1)

for some integers ny,ny with ny +ng = (n—1)/2.

In this paper we study contact CR-submanifolds of maximal contact CR-
dimension in S?™*1 under the assumption only that the equality given in (3.1)
holds on M, and improve Theorem P-K.

Manifolds, submanifolds, geometric objects and mappings we discuss in this
paper will be assumed to be differentiable and of class C*°.

2. Fundamental properties of contact C R-submanifolds

Let M be a (2m+1)-dimensional almost contact metric manifold with struc-
ture (¢,£,7,9). Then by definition it follows that

ay  FX=XAaXE =0, n@X) =0, we)=1,
' 9(9X,9Y) = g(X,Y) —n(X)n(Y), n(X)=g(X,§)

for any vector fields X, Y tangent to M.

Let M be an (n+1)-dimensional submanifold tangent to the structure vector
field £ of M. If the ¢-invariant subspace D, has constant dimension for any
x € M, then M is called a contact CR-submanifold and the constant is called
contact CR-dimension of M (cf. [1, 5, 8]).

From now on we assume that M is a contact CR-submanifold of (n — 1)
contact CR-dimension in M, where n — 1 must be even. Then, as already
mentioned in section 1, the structure vector ¢ is always contained in D} and
¢DL C T,M*L at any point & € M. Further, by definition dim D} =2 at any
point z € M, and so there exists a unit vector field U contained in D which
is orthogonal to £. Since ¢D+ C TM~, ¢U is a unit normal vector field to M,
which will be denoted by N, that is,

(2.2) N = ¢U.

Moreover, it is clear that gTM C TM & Span{N}. Hence we have, for
any tangent vector field X and for a local orthonormal basis {Ng}a=1,..p
(N1 = N, p=2m—n) of normal vectors to M, the following decomposition in
tangential and normal components :

(2.3) ¢X = FX + u(X)N,

(2.4) ¢N, = ~Us + PNy, a=1,...,p.

It is easily shown that F' and P are skew-symmetric linear endomorphisms
acting on T, M and T, M, respectively. Since the structure vector field £ is
tangent to M, (2.1) implies

(2.5) 9(FUq, X) = —u' (X)g(N1, PNa),
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(2.6) 9(Ua Ug) = bap — g(PNa, PNp).

We also have

(2.7) 9(Us, X) = u' (X614

and consequently

(2.8) gU1,X) =ul(X), Uy=0, a=2,...,p

Moreover it is clear from (2.3) that

(2.9) FE=0, w'(¢)=0, FU=0, «'(U)=1
Next, applying ¢ to (2.2) and using (2.1) and (2.4), we have

(2.10) Uy=U, PN =PN=0.

From now on, in the sense of (2.8) and (2.10), we denote by u instead of u?.
Applying ¢ to (2.3) and using (2.1), (2.3), (2.4) and (2.10), we also have

(2.11) F?X = - X + p(X)¢ + w(X)U, u(FX)=0.
On the other hand, it follows from (2.4), (2.8) and (2.10) that
(2.12) ¢N =-U, éN,=PN,, a=2,...p

and consequently we can take a local orthonormal basis {N, Ng, Ny+ }a=1,.. 4
of normal vectors to M such that

(2.13) N« :=¢N,, a=1,...,q:=(2m—n)/2.

We denote by V and V the Levi-Civita connection on M and M, respectively,
and by V+ the normal connection induced from V in the normal bundle TM~+
of M. Then Gauss and Weingarten formulae are given by

(2.14) VxY =VxY +h(X,Y),

q
(2.15); VXN =-AX+ VN =-AX + > {8a(X)Na+ sa+(X)No-},

a=1

q
(2.15), VxNo=—AX = 5a(X)N + > {5a5(X)Ns + 8ap+ (X)Np-},
b=1

q
(2.15)3  VxNar = A= X — 50« (X)N + > {8a6(X)Np + a0 (X)Nov },
b=1

for any tangent vector fields X,Y to M, where s's are coefficients of the normal
connection V-, namely,

P
V%N, = Zsaﬂ(X)Ng, a=1,...,p,
B=1
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the matrix (sqp) being skew-symmetric. Here h denotes the second funda-
mental form and A, A,, A,« the shape operators corresponding to the normals
N, N,, Ny«, respectively. They are related by

g
(2.16)  h(X,Y)=g(AX,Y)N + ) {g(A.X,Y)N, + g(Ae: X,Y)No-}.
a=1
On the other hand, by definition the structure vector £ is tangent to M.
Hence, from (2.1), (2.3), (2.12), (2.13) and (2.15)2 — (2.15)3, it can be easily
verified that

(2.17) AX = —FAp X + 50 (X)U, ApX =FAX — 35,(X)U,
(2.18) 84(X) = —u(Ag+ X), 5ar(X) = u(AX).

Since F' is skew-symmetric, (2.17) implies

(2.19)1 9(F Ao+ AF)X,Y) = so(X)u(Y) — sa(YV)u(X),

(2.19), g(FAg + Apu F)X)Y) = 50+ (X )u(Y) — 8o+ (Y)u(X).

From now on we specialize to the case of an ambient Sasakian manifold M,
that is,

(2.20) Vx¢ = ¢X,

(2.21) (Vx)Y = —g(X,Y) +n(Y)X.

Differentiating (2.3) and (2.12) covariantly and comparing the tangential
and normal parts, we have

(2.22) (VyF)X = —g(Y, X)¢ + n(X)Y — g(AY, X)U + u(X)AY,
(2.23) (Vyu)X = g(FAY, X),

(2.24) VxU =FAX.

On the other hand, since the structure vector ¢ is tangent to M, (2.20) gives
(2.25) Vx{=FX,

(2.26) g(AE, X) = u(X), thatis, AE=T,

(2.27) A =0, An€=0, a=2,...,q

If the ambient manifold M is of constant curvature 1, then the equation of
Codazzi implies that

(VxA)Y — (Vy A)X

(228 _ i {5a(X)AaY = 5a(Y)AaX + $ar(X) A Y — $q+ (Y) Ag- X},
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(Van)Y - (VyAa)X = Sa(Y)AX - Sa(X)AY
(228)2 + Z{Sab(X>AbY - Sab(Y)AbX ~|— Sab* (X)Ab*Y — Sab* (Y)Ab* X},
b=1

(2.28)3
(VxAg-)Y — (Vy Ag )X = s0x(Y)AX — 544 (X)AY

q
+ Y {5asb(X)AY — 5005 (V) A X + sarpe (X) Ay Y — 8gepe (V) Ap- X},
b=1
for any vector fields X,Y tangent to M(cf. [1, 2, 8]).

3. Main results

In this section we let M be an (n + 1)-dimensional contact C' R-submanifold
of (n — 1) contact C' R-dimension immersed in a (2m + 1)-unit sphere S2m+1
and assume that the equality

(3.1) h(FX,Y)=—h(X,FY)

holds on M. Then it follows from (2.16) and (3.1) that

(3.2) FA=AF, FA,=A,F, FA, = A.F,

which together with (2.19); and (2.19), implies

(33) 29((FA)X,Y) = sa(X)u(Y) — salY Ju(X),

(33)2 29((F Age) X, Y) = 800 (X)u(Y) — s (¥ )u(X),

from which and (2.9),

(3.4) $o(X) = 5, (U)u(X), 8ax(X) =80+ (Du(X), a=1,...,q
Further, (3.2) and (3.3); — (3.3) yield

(3.5) FAy=AgF =0, FAg = AgF =0.

As a direct consequence of the first equation of (3.2) and (3.5), it follows from
(2.11), (2.18), (2.26) and (2.27) that

(3.6) AU =AU + £, A :=u(AU),

(3.7 AcX =5, (X)U, ApX = —5,(X)U.
Now we prepare a lemma for later use.

Lemma 3.1. Let M be an (n+1)(n > 3)-dimensional contact C R-submanifold
of (n — 1) contact CR-dimension immersed in a (2m + 1)-unit sphere S*™+1.
If, for any vector fields X,Y tangent to M, the equality (3.1) holds on M, then

S =0, s4+=0, a=1,...q,
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namely, the distinguished normal vector field N is parallel with respect to the
normal connection. Moreover,

Aa=0, Aa*:O, azl,...q.

Proof. Since $?™*1 is of constant curvature 1, applying F to the both sides of
(2.28)5 and using (3.4) — (3.5), we have

(3.8)  F((VxA,)Y — (VyAy)X) = s,(V)u(Y)FAX — 5,(U)u(X)FAY.

On the other hand, differentiating FA, = 0 covariantly along M and using
(2.22), (2.27), (3.4), and (3.8) we can easily obtain

F(VxA,Y
= o+ (u(X)u(Y)§ + sa= (U)u(AX)u(Y)U — so- (U)u(Y ) AX,
from which and (3.6),
F((VxA,Y = (VyAu)X)
= s (U){n(X)u(Y) — u(X)n(Y)}U — sa» (U){u(Y)AX —u(X)AY}.
Comparing (3.9) with (3.8), it is clear that
Sa(U{uw(Y)FAX —u(X)FAY}
= Sa» (UN{n(X)u(Y) — u(X)n(Y)}U — sax (U){u(Y)AX — u(X)AY},
from which, putting ¥ = U and using (3.6), we have
s.(U)g(FAX,Y)
= s () {n(X)u(Y) + u(X)n(Y) + Mu(X)u(Y) - g(AX,Y)},
and consequently
(3.10) sa(D{g(FAX,Y) — g(FAY, X)} = 25,(U)g(FAX,Y) =0

with the aid of the fact that F' is skew-symmetric and (3.2).
Now we assume that s,(U) # 0. Then it follows from (2.23), (2.24) and
(3.10) that

(3.9)

(3.11) FAX =0, VxU=0, Vxu=0.
Furthermore, (2.11), (3.6) and the first equation of (3.11) imply
(3.12) AX = {Mu(X) + (X))} +uw(X)E.

Differentiating (3.12) covariantly along M and using (2.25) and (3.11), we have
(Vy A)X = {(¥ Nu(X) + g(X, FY)}U + u(X)FY,
from which together with (2.9), (2.28); and (3.5),
F(VyA)X — (VxA)Y) =u(X){-Y + u(Y)U +n(Y)¢}
—u(Y){-X +uw(X)U +n(X)&} = 0.
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and consequently X = u(X)U + n(X)&, which is a contradiction because of
n > 3. Hence 5,(U) = 0, which and (3.4) imply
(3.13) $.(X)=0, a=1,...,q
everywhere on M.
Next, combining (3.7) and (3.12), we have

Ay =0, a=1,...,q,

from which, using (2.28)3 and (3.5),
Sar(UHu(YYFAX —u(X)FAY} = 0.

Putting Y = U in the above equation and using (2.9), we have sq+(U) FAX =0
and hence, by the same method as in the case of (3.13),
{(3.14) $+(X)=0, a=1,...,q
everywhere on M. Further (3.7) and (3.14) give

A, =0, a=1,...,q.

|

For the submanifold M given in Lemma 3.1, we can easily see that its first
normal space is contained in Span{N} which is invariant under parallel trans-
lation with respect to the normal connection V4 from our assumption. Thus
we may apply Erbacher’s reduction theorem ([3, p.339]) and this yields

Theorem 3.2. Let M be as in Lemma 3.1. If the equality appeared in (3.1)

holds on M, then there exists an (n+2)-dimensional totally geodesic unit sphere
S™*2 such that M C S™*2.

Combining Theorem P-K stated in section 1 and Lemma 3.1, we have

Theorem 3.3. Let M be as in Lemma 3.1. If the equality appeared in (3.1)
holds on M, then M is locally isometric to

S§2mFlip) x §P2tl(ry) (12 413 = 1)

for some integers ni,ny with ny +ng = (n —1)/2.
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