CERTAIN CONTACT CR-SUBMANIFOLDS OF AN ODD-DIMENSIONAL UNIT SPHERE

HYANG SOOK KIM AND JIN SUK PAK[†]

ABSTRACT. We study an $(n+1)(n \ge 3)$ -dimensional contact CR-submanifold of (n-1) contact CR-dimension in a (2m+1)-unit sphere S^{2m+1} , and to determine such submanifolds under conditions concerning the second fundamental form and the induced almost contact structure.

1. Introduction

Let S^{2m+1} be a (2m+1)-unit sphere in the complex (m+1)-space \mathbb{C}^{m+1} . For any point $z \in S^{2m+1}$ we put $\xi = Jz$, where J denotes the complex structure of \mathbb{C}^{m+1} . Denoting by π the orthogonal projection : $T_z\mathbb{C}^{m+1} \to T_zS^{2m+1}$ and putting $\phi = \pi \circ J$, we can see that the aggregate (ϕ, ξ, η, g) is a Sasakian structure on S^{2m+1} , where g is the standard metric on S^{2m+1} induced from that of \mathbb{C}^{m+1} and η is a 1-form dual to ξ . Hence S^{2m+1} can be considered as a Sasakian manifold of constant curvature 1 (cf. [1, 2, 4, 5, 6, 8]).

Let M be an (n+1)-dimensional submanifold tangent to the structure vector field ξ of S^{2m+1} and denote by \mathcal{D}_x the ϕ -invariant subspace $T_xM \cap \phi T_xM$ of the tangent space T_xM of M at x in M. Then ξ cannot be contained in \mathcal{D}_x at any point x in M (cf. [5]). Thus the assumption $\dim \mathcal{D}_x^{\perp}$ being constant and equal to 2 at each point x in M yields that M can be dealt with a contact CR-submanifold in the sense of Yano-Kon (cf. [5, 6, 8]), where \mathcal{D}_x^{\perp} denotes the complementary orthogonal subspace to \mathcal{D}_x in T_xM . In fact, if there exists a non-zero vector U which is orthogonal to ξ and contained in \mathcal{D}_x^{\perp} , then $N := \phi U$ must be normal to M.

In this point of view, the present authors, Kwon and Kim ([6]) studied (n+1)-dimensional contact CR-submanifolds of maximal contact CR-dimension in S^{2m+1} , namely, those with dim $\mathcal{D}_x=n-1$ at each point x in M and proved

Theorem P-K. Let M be an (n+1)-dimensional contact CR-submanifold of (n-1) contact CR-dimension immersed in a (2m+1)-unit sphere S^{2m+1} . If

Received February 10, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 53C40, 53C25.

 $[\]it Key\ words\ and\ phrases.$ odd-dimensional unit sphere, contact $\it CR$ -submanifold, Sasakian structure, almost contact structure.

 $^{^\}dagger {\rm This}$ work was supported by Proj. No. R14-2002-003-01002-0 from Korea Research Foundation, Korea 2005.

the distinguished normal vector field N is parallel with respect to the normal connection and the equality appeared in (3.1) holds on M, then M is locally isometric to

$$S^{2n_1+1}(r_1) \times S^{2n_2+1}(r_2) \quad (r_1^2 + r_2^2 = 1)$$

for some integers n_1, n_2 with $n_1 + n_2 = (n-1)/2$.

In this paper we study contact CR-submanifolds of maximal contact CR-dimension in S^{2m+1} under the assumption only that the equality given in (3.1) holds on M, and improve Theorem P-K.

Manifolds, submanifolds, geometric objects and mappings we discuss in this paper will be assumed to be differentiable and of class C^{∞} .

2. Fundamental properties of contact CR-submanifolds

Let \overline{M} be a (2m+1)-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g) . Then by definition it follows that

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \quad \phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi)$$

for any vector fields X, Y tangent to \overline{M} .

Let M be an (n+1)-dimensional submanifold tangent to the structure vector field ξ of \overline{M} . If the ϕ -invariant subspace \mathcal{D}_x has constant dimension for any $x \in M$, then M is called a *contact CR-submanifold* and the constant is called *contact CR-dimension* of M (cf. [1, 5, 8]).

From now on we assume that M is a contact CR-submanifold of (n-1) contact CR-dimension in \overline{M} , where n-1 must be even. Then, as already mentioned in section 1, the structure vector ξ is always contained in \mathcal{D}_x^{\perp} and $\phi \mathcal{D}_x^{\perp} \subset T_x M^{\perp}$ at any point $x \in M$. Further, by definition $\dim \mathcal{D}_x^{\perp} = 2$ at any point $x \in M$, and so there exists a unit vector field U contained in \mathcal{D}^{\perp} which is orthogonal to ξ . Since $\phi \mathcal{D}^{\perp} \subset TM^{\perp}$, ϕU is a unit normal vector field to M, which will be denoted by N, that is,

$$(2.2) N := \phi U.$$

Moreover, it is clear that $\phi TM \subset TM \oplus \operatorname{Span}\{N\}$. Hence we have, for any tangent vector field X and for a local orthonormal basis $\{N_{\alpha}\}_{\alpha=1,...,p}$ $(N_1=N,\ p=2m-n)$ of normal vectors to M, the following decomposition in tangential and normal components:

(2.3)
$$\phi X = FX + u^1(X)N,$$

(2.4)
$$\phi N_{\alpha} = -U_{\alpha} + PN_{\alpha}, \quad \alpha = 1, \dots, p.$$

It is easily shown that F and P are skew-symmetric linear endomorphisms acting on T_xM and T_xM^{\perp} , respectively. Since the structure vector field ξ is tangent to M, (2.1) implies

(2.5)
$$g(FU_{\alpha}, X) = -u^{1}(X)g(N_{1}, PN_{\alpha}),$$

(2.6)
$$g(U_{\alpha}, U_{\beta}) = \delta_{\alpha\beta} - g(PN_{\alpha}, PN_{\beta}).$$

We also have

(2.7)
$$q(U_{\alpha}, X) = u^{1}(X)\delta_{1\alpha}$$

and consequently

(2.8)
$$g(U_1, X) = u^1(X), \quad U_{\alpha} = 0, \quad \alpha = 2, \dots, p.$$

Moreover it is clear from (2.3) that

(2.9)
$$F\xi = 0, \quad u^1(\xi) = 0, \quad FU = 0, \quad u^1(U) = 1.$$

Next, applying ϕ to (2.2) and using (2.1) and (2.4), we have

$$(2.10) U_1 = U, PN_1 = PN = 0.$$

From now on, in the sense of (2.8) and (2.10), we denote by u instead of u^1 . Applying ϕ to (2.3) and using (2.1), (2.3), (2.4) and (2.10), we also have

(2.11)
$$F^{2}X = -X + \eta(X)\xi + u(X)U, \quad u(FX) = 0.$$

On the other hand, it follows from (2.4), (2.8) and (2.10) that

(2.12)
$$\phi N = -U, \quad \phi N_{\alpha} = PN_{\alpha}, \quad \alpha = 2, \dots, p,$$

and consequently we can take a local orthonormal basis $\{N, N_a, N_{a^*}\}_{a=1,\dots,q}$ of normal vectors to M such that

(2.13)
$$N_{a^*} := \phi N_a, \quad a = 1, \dots, q := (2m - n)/2.$$

We denote by $\overline{\nabla}$ and ∇ the Levi-Civita connection on \overline{M} and M, respectively, and by ∇^{\perp} the normal connection induced from $\overline{\nabla}$ in the normal bundle TM^{\perp} of M. Then Gauss and Weingarten formulae are given by

$$(2.14) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

$$(2.15)_1 \qquad \overline{\nabla}_X N = -AX + \nabla_X^{\perp} N = -AX + \sum_{a=1}^q \{s_a(X)N_a + s_{a^*}(X)N_{a^*}\},$$

$$(2.15)_2 \qquad \overline{\nabla}_X N_a = -A_a X - s_a(X) N + \sum_{b=1}^q \{ s_{ab}(X) N_b + s_{ab^*}(X) N_{b^*} \},$$

$$(2.15)_3 \quad \overline{\nabla}_X N_{a^*} = -A_{a^*} X - s_{a^*}(X) N + \sum_{b=1}^q \{ s_{a^*b}(X) N_b + s_{a^*b^*}(X) N_{b^*} \},$$

for any tangent vector fields X, Y to M, where s's are coefficients of the normal connection ∇^{\perp} , namely,

$$abla_X^{\perp} N_{lpha} = \sum_{eta=1}^p s_{lphaeta}(X) N_{eta}, \quad lpha = 1, \dots, p,$$

the matrix $(s_{\alpha\beta})$ being skew-symmetric. Here h denotes the second fundamental form and A, A_a, A_{a^*} the shape operators corresponding to the normals N, N_a, N_{a^*} , respectively. They are related by

(2.16)
$$h(X,Y) = g(AX,Y)N + \sum_{a=1}^{q} \{g(A_aX,Y)N_a + g(A_{a^*}X,Y)N_{a^*}\}.$$

On the other hand, by definition the structure vector ξ is tangent to M. Hence, from (2.1), (2.3), (2.12), (2.13) and (2.15)₂ – (2.15)₃, it can be easily verified that

$$(2.17) A_a X = -F A_{a^*} X + s_{a^*} (X) U, A_{a^*} X = F A_a X - s_a (X) U,$$

$$(2.18) s_a(X) = -u(A_{a^*}X), s_{a^*}(X) = u(A_aX).$$

Since F is skew-symmetric, (2.17) implies

$$(2.19)_1 g(FA_a + A_aF)X,Y) = s_a(X)u(Y) - s_a(Y)u(X),$$

$$(2.19)_2 g(FA_{a^*} + A_{a^*}F)X,Y) = s_{a^*}(X)u(Y) - s_{a^*}(Y)u(X).$$

From now on we specialize to the case of an ambient Sasakian manifold \overline{M} , that is,

$$(2.20) \overline{\nabla}_X \xi = \phi X,$$

(2.21)
$$(\overline{\nabla}_X \phi) Y = -g(X, Y) \xi + \eta(Y) X.$$

Differentiating (2.3) and (2.12) covariantly and comparing the tangential and normal parts, we have

$$(2.22) (\nabla_Y F)X = -g(Y, X)\xi + \eta(X)Y - g(AY, X)U + u(X)AY,$$

$$(2.23) (\nabla_Y u)X = q(FAY, X),$$

$$(2.24) \nabla_X U = FAX.$$

On the other hand, since the structure vector ξ is tangent to M, (2.20) gives

$$(2.25) \nabla_X \xi = FX,$$

(2.26)
$$g(A\xi, X) = u(X)$$
, that is, $A\xi = U$,

$$(2.27) A_a \xi = 0, A_{a^*} \xi = 0, a = 2, \dots, q.$$

If the ambient manifold \overline{M} is of constant curvature 1, then the equation of Codazzi implies that

$$(\nabla_X A)Y - (\nabla_Y A)X$$

$$(2.28)_1 = \sum_{a=1}^{q} \{ s_a(X) A_a Y - s_a(Y) A_a X + s_{a^*}(X) A_{a^*} Y - s_{a^*}(Y) A_{a^*} X \},$$

$$(\nabla_X A_a) Y - (\nabla_Y A_a) X = s_a(Y) A X - s_a(X) A Y$$

$$+ \sum_{b=1}^{q} \{ s_{ab}(X) A_b Y - s_{ab}(Y) A_b X + s_{ab^*}(X) A_{b^*} Y - s_{ab^*}(Y) A_{b^*} X \},$$

$$(2.28)_{3} (\nabla_{X} A_{a^{*}}) Y - (\nabla_{Y} A_{a^{*}}) X = s_{a^{*}}(Y) A X - s_{a^{*}}(X) A Y + \sum_{b=1}^{q} \{ s_{a^{*}b}(X) A_{b} Y - s_{a^{*}b}(Y) A_{b} X + s_{a^{*}b^{*}}(X) A_{b^{*}} Y - s_{a^{*}b^{*}}(Y) A_{b^{*}} X \},$$

for any vector fields X, Y tangent to M(cf. [1, 2, 8]).

3. Main results

In this section we let M be an (n+1)-dimensional contact CR-submanifold of (n-1) contact CR-dimension immersed in a (2m+1)-unit sphere S^{2m+1} and assume that the equality

$$(3.1) h(FX,Y) = -h(X,FY)$$

holds on M. Then it follows from (2.16) and (3.1) that

(3.2)
$$FA = AF, \quad FA_a = A_aF, \quad FA_{a^*} = A_{a^*}F,$$

which together with $(2.19)_1$ and $(2.19)_2$ implies

$$(3.3)_1 2g((FA_a)X,Y) = s_a(X)u(Y) - s_a(Y)u(X),$$

$$(3.3)_2 2g((FA_{a^*})X,Y) = s_{a^*}(X)u(Y) - s_{a^*}(Y)u(X),$$

from which and (2.9),

$$(3.4) s_a(X) = s_a(U)u(X), s_{a^*}(X) = s_{a^*}(U)u(X), a = 1, \dots, q.$$

Further, (3.2) and $(3.3)_1 - (3.3)_2$ yield

(3.5)
$$FA_a = A_a F = 0, \quad FA_{a^*} = A_{a^*} F = 0.$$

As a direct consequence of the first equation of (3.2) and (3.5), it follows from (2.11), (2.18), (2.26) and (2.27) that

(3.6)
$$AU = \lambda U + \xi, \quad \lambda := u(AU),$$

(3.7)
$$A_a X = s_{a^*}(X)U, \quad A_{a^*} X = -s_a(X)U.$$

Now we prepare a lemma for later use.

Lemma 3.1. Let M be an $(n+1)(n \ge 3)$ -dimensional contact CR-submanifold of (n-1) contact CR-dimension immersed in a (2m+1)-unit sphere S^{2m+1} . If, for any vector fields X, Y tangent to M, the equality (3.1) holds on M, then

$$s_a = 0, \quad s_{a^*} = 0, \quad a = 1, \dots q,$$

namely, the distinguished normal vector field N is parallel with respect to the normal connection. Moreover,

$$A_a = 0, \quad A_{a^*} = 0, \quad a = 1, \dots q.$$

Proof. Since S^{2m+1} is of constant curvature 1, applying F to the both sides of $(2.28)_2$ and using (3.4) - (3.5), we have

$$(3.8) F((\nabla_X A_a)Y - (\nabla_Y A_a)X) = s_a(U)u(Y)FAX - s_a(U)u(X)FAY.$$

On the other hand, differentiating $FA_a = 0$ covariantly along M and using (2.22), (2.27), (3.4), and (3.8) we can easily obtain

$$F(\nabla_X A_a)Y = s_{a^*}(U)u(X)u(Y)\xi + s_{a^*}(U)u(AX)u(Y)U - s_{a^*}(U)u(Y)AX,$$

from which and (3.6),

(3.9)
$$F((\nabla_X A_a)Y - (\nabla_Y A_a)X) = s_{a^*}(U)\{\eta(X)u(Y) - u(X)\eta(Y)\}U - s_{a^*}(U)\{u(Y)AX - u(X)AY\}.$$

Comparing (3.9) with (3.8), it is clear that

$$s_a(U)\{u(Y)FAX - u(X)FAY\}$$

$$= s_{a^*}(U)\{\eta(X)u(Y) - u(X)\eta(Y)\}U - s_{a^*}(U)\{u(Y)AX - u(X)AY\},$$

from which, putting Y = U and using (3.6), we have

$$s_a(U)g(FAX,Y)$$

$$= s_{a^*}(U)\{\eta(X)u(Y) + u(X)\eta(Y) + \lambda u(X)u(Y) - g(AX,Y)\},$$

and consequently

(3.10)
$$s_a(U)\{g(FAX,Y) - g(FAY,X)\} = 2s_a(U)g(FAX,Y) = 0$$

with the aid of the fact that F is skew-symmetric and (3.2).

Now we assume that $s_a(U) \neq 0$. Then it follows from (2.23), (2.24) and (3.10) that

$$(3.11) FAX = 0, \nabla_X U = 0, \nabla_X u = 0.$$

Furthermore, (2.11), (3.6) and the first equation of (3.11) imply

$$(3.12) AX = \{\lambda u(X) + \eta(X)\}U + u(X)\xi.$$

Differentiating (3.12) covariantly along M and using (2.25) and (3.11), we have

$$(\nabla_Y A)X = \{(Y\lambda)u(X) + g(X, FY)\}U + u(X)FY,$$

from which together with (2.9), $(2.28)_1$ and (3.5),

$$F((\nabla_Y A)X - (\nabla_X A)Y) = u(X)\{-Y + u(Y)U + \eta(Y)\xi\} - u(Y)\{-X + u(X)U + \eta(X)\xi\} = 0.$$

and consequently $X=u(X)U+\eta(X)\xi$, which is a contradiction because of $n\geq 3$. Hence $s_a(U)=0$, which and (3.4) imply

$$(3.13) s_a(X) = 0, \quad a = 1, \dots, q$$

everywhere on M.

Next, combining (3.7) and (3.12), we have

$$A_{a^*} = 0, \quad a = 1, \dots, q,$$

from which, using $(2.28)_3$ and (3.5),

$$s_{a^*}(U)\{u(Y)FAX - u(X)FAY\} = 0.$$

Putting Y = U in the above equation and using (2.9), we have $s_{a^*}(U)$ FAX = 0 and hence, by the same method as in the case of (3.13),

$$(3.14) s_{a^*}(X) = 0, \quad a = 1, \dots, q$$

everywhere on M. Further (3.7) and (3.14) give

$$A_a = 0, \quad a = 1, \dots, q.$$

For the submanifold M given in Lemma 3.1, we can easily see that its first normal space is contained in $\mathrm{Span}\{N\}$ which is invariant under parallel translation with respect to the normal connection ∇^{\perp} from our assumption. Thus we may apply Erbacher's reduction theorem ([3, p.339]) and this yields

Theorem 3.2. Let M be as in Lemma 3.1. If the equality appeared in (3.1) holds on M, then there exists an (n+2)-dimensional totally geodesic unit sphere S^{n+2} such that $M \subset S^{n+2}$.

Combining Theorem P-K stated in section 1 and Lemma 3.1, we have

Theorem 3.3. Let M be as in Lemma 3.1. If the equality appeared in (3.1) holds on M, then M is locally isometric to

$$S^{2n_1+1}(r_1) \times S^{2n_2+1}(r_2) \quad (r_1^2 + r_2^2 = 1)$$

for some integers n_1, n_2 with $n_1 + n_2 = (n-1)/2$.

References

- A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht-Boston-Lancaster-Tokyo, 1986.
- [2] B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
- [3] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 5 (1971), 333-340.
- [4] M. Kon, On hypersurfaces immersed in S^{2n+1} , Ann. Fac. Aci. de Kinshasa 4 (1978), 1–24.
- [5] J.-H. Kwon and J. S. Pak, On some contact CR-submanifolds of an odd-dimensional unit sphere, Soochow J. Math. 26 (2000), 427-439.
- [6] J. S. Pak, J.-H. Kwon, H. S. Kim, and Y.-M. Kim, Contact CR-submanifolds of an odd-dimensional unit sphere, Geometriae Dedicata 114 (2005), 1–11.

- [7] P. Ryan, Homogeneity and some curvature condition for hypersurfaces, Tohoku J. Math. 21 (1969), 363–388.
- [8] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, Boston-Basel-Stuttgart, 1983.

HYANG SOOK KIM
DEPARTMENT OF COMPUTATIONAL MATHEMATICS
SCHOOL OF COMPUTER AIDED SCIENCE AND INSTITUTE OF MATHEMATICAL SCIENCES
COLLEGE OF NATURAL SCIENCE
INJE UNIVERSITY
KIMHAE 621-749, KOREA

JIN SUK PAK
DEPARTMENT OF MATHEMATICS EDUCATION
KYUNGPOOK NATIONAL UNIVERSITY
DAEGU 702-701, KOREA
E-mail address: jspak@knu.ac.kr

E-mail address: mathkim@inje.ac.kr