• Title/Summary/Keyword: conductive carbon

Search Result 449, Processing Time 0.025 seconds

Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption (불소화 탄소나노튜브를 적용한 저에너지 소모형 축전식 탈염전극의 제조 및 특성)

  • Yoo, Hyun-woo;Kang, Ji-hyun;Park, Nam-soo;Kim, Tae-il;Kim, Min-Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.386-390
    • /
    • 2016
  • The surface of carbon nanotubes (CNTs) was modified by fluorination and applied to conductive materials to improve the energy efficiency of a capacitive desalination (CDI) electrode. CNTs were fluorinated at room temperature with a mixed gas of fluorine and nitrogen, and activated carbon based CDI electrodes were then prepared by adding 0-0.5 wt% of untreated CNTs or fluorinated CNTs with respect to the activated carbon. Fluorinated CNTs showed improved dispersibility in the electrode and also slurry as compared to untreated CNTs, which was confirmed by the zeta potential and scanning electron microscopy. Fluorinated CNTs added electrodes showed higher desalination efficiency but lower energy consumption than those of using untreated CNTs added electrodes. This was attributed to the decrease in the resistance of CDI electrodes due to the improved dispersibility of CNTs by fluorination.

Fabrication of Photosensitive Polymer Resistor Paste and Formation of Finely-Patterned Thick Film Resistors (감광성 폴리머 저항 페이스트 제조와 미세패턴 후막저항의 형성)

  • Kim, Dong-Kook;Park, Seong-Dae;Yoo, Myong-Jae;Sim, Sung-Hoon;Kyoung, Jin-Bum
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.622-627
    • /
    • 2009
  • Using an alkali-solution developable photosensitive resin and a carbon black as a conductive filler, photo-patternable pastes for polymer thick film resistor were fabricated and evaluated. A photo solder resist (PSR), which is usually used as protecting layer of printed circuit board (PCB), was used as a photosensitive resin so that ultraviolet exposure and alkali-aqueous solution development of paste were possible. After fabricating the photosensitive polymer resistor paste, the electrical properties of thick film resistors were measured using PCB test boards. Sheet resistance was decreased with increasing amount of carbon black, but the developability was limited in excess loading of carbon black. The sheet resistance was also reduced by re-curing and the change rate was smaller in higher carbon black loading. Moreover, finely patterned meander-type thick film resistors were fabricated using photo-process and large resistance up to several tens of sheet resistance could be obtained in small area by this technique.

Green synthesis of fluorescent carbon dots from carrot juice for in vitro cellular imaging

  • Liu, Yang;Liu, Yanan;Park, Mira;Park, Soo-Jin;Zhang, Yifan;Akanda, Md Rashedunnabi;Park, Byung-Yong;Kim, Hak Yong
    • Carbon letters
    • /
    • v.21
    • /
    • pp.61-67
    • /
    • 2017
  • We report the use of carrot, a new and inexpensive biomaterial source, for preparing high quality carbon dots (CDs) instead of semi-conductive quantum dots for bioimaging application. The as-derived CDs possessing down and up-conversion photoluminescence features were obtained from carrot juice by commonly used hydrothermal treatment. The corresponding physiochemical and optical properties were investigated by electron microscopy, fluorescent spectrometry, and other spectroscopic methods. The surfaces of obtained CDs were highly covered with hydroxyl groups and nitrogen groups without further modification. The quantum yield of as-obtained CDs was as high as 5.16%. The cell viability of HaCaT cells against a purified CD aqueous solution was higher than 85% even at higher concentration ($700{\mu}g\;mL^{-1}$) after 24 h incubation. Finally, CD cultured cells exhibited distinguished blue, green, and red colors, respectively, during in vitro imaging when excited by three wavelength lasers under a confocal microscope. Offering excellent optical properties, biocompatibility, low cytotoxicity, and good cellular imaging capability, the carrot juice derived CDs are a promising candidate for biomedical applications.

Manganese Doped LiFePO4 as a Cathode for High Energy Density Lithium Batteries (고에너지밀도 리튬전지를 위한 망간이 첨가된 LiFePO4 양극재료)

  • Kim, Dul-Sun;Kim, Jae-Kwang;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-161
    • /
    • 2013
  • Porous $LiMn_{0.6}Fe_{0.4}PO_4$ (LMFP) was synthesized by a sol-gel process. Uniform dispersion of the conductive carbon source throughout LMFP with uniform carbon coating was achieved by heating a stoichiometric mixture of raw materials at $600^{\circ}C$ for 10 h. The crystal structure of LMFP was investigated by Rietveld refinement. The surface structure and pore properties were investigated by SEM, TEM and BET. The LMFP so obtained has a high specific surface area with a uniform, porous, and web-like nano-sized carbon layer at the surface. The initial discharge capacity and energy density were 152 mAh/g and 570 Wh/kg, respectively, at 0.1 C current density, and showed stable cycle performance. The combined effect of high porosity and uniform carbon coating leads to fast lithium ion diffusion and enhanced electrochemical performance.

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode (전기활성 고분자 전극용 탄소입자 강화고무의 전기적 및 기계적 특성)

  • Lee, Jun Man;Ryu, Sang Ryeoul;Lee, Dong Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1465-1471
    • /
    • 2013
  • The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.

Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis (음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가)

  • Lee, Wonoh;Lee, Sang-Bok;Choi, Oyoung;Yi, Jin-Woo;Byun, Joon-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1130-1135
    • /
    • 2010
  • Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Recent Progress in Conductive Polymer-based Membranes (전도성 고분자 분리막의 최근 연구동향)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.101-119
    • /
    • 2021
  • The demand for clean water is virtually present in all modern human societies even as our society has developed increasingly more advanced and sophisticated technologies to improve human life. However, as global climate change begins to show more dramatic effects in many regions in the world, the demand for a cheap, effective way to treat wastewater or to remove harmful bacteria, microbes, viruses, and other solvents detrimental to human health has continued to remain present and remains as important as ever. Well-established synthetic membranes composed of polyaniline (PANI), polyvinylidene fluoride (PVDF), and others have been extensively studied to gather information regarding the characteristics and performance of the membrane, but recent studies have shown that making these synthetic membranes conductive to electrical current by doping the membrane with another material or incorporating conductive materials onto the surface of the membrane, such as allotropes of carbon, have shown to increase the performance of these membranes by allowing the adjustability of pore size, improving antifouling and making the antibacterial property better. In this review, modern electrically conductive membranes are compared to conventional membranes and their performance improvements under electric fields are discussed, as well as their potential in water filtration and wastewater treatment applications.

Compositions for Photosensitive Polymer Resistor Paste Using Epoxy Acrylates (에폭시 아크릴레이트를 이용한 감광성 폴리머 저항 페이스트 조성)

  • Kim, Dong Kook;Park, Seong-Dae;Lee, Kyu-Bok;Kyoung, Jin-Bum
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2012
  • Using six kinds of epoxy acrylates and a conductive carbon black, photosensitive resistor pastes were fabricated and then their developability in alkaline aqueous solution and the resistance values after thermal curing were evaluated. In order to impart the photocurability by UV exposure and the developability on alkaline solution, epoxy acrylate oligomers with carboxyl group, acrylate monomers, a photoinitiator and so forth were used. In addition, an organic peroxide was added into the paste to get a thermally curable composition. As a result, some of the pastes were not developed depending on the kinds of oligomers and, in the developed pastes, the measured resistance showed the different values depending on their compositions, even though they contain the same amount of carbon black. Finally, the optimum oligomer was selected and then, by adjusting the amount of carbon black, the kind of monomer and the curing temperature, the photosensitive resistor paste composition which showed the sheet resistance of about 0.5 $k{\Omega}/sq.$ could be obtained.

Liquid electrochemical sensors using carbon nanotube film (Carbon Nanotube Film을 이용한 액체 전기화학 센서)

  • Noh, Jaeha;An, Sangsu;Lee, Changhan;Lee, Sangtae;Lee, Moonjin;Seo, Dongmin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.255-260
    • /
    • 2021
  • We studied electrochemical sensors using printed carbon nanotube (CNT) film on a polyethylene terephthalate (PET) substrate. Multiwalled CNT films were printed on a PET substrate to study its feasibility as hazardous and noxious substances (HNS) detection sensor. The printed CNT film (PCF) with a 50 ㎛ thickness exhibited a specific resistance of 230 ohm. To determine the optimum sensor structure, a resistance-type PCF sensor (R-type PCF sensor) and a conductive-type PCF sensor (C-type PCF sensor) were fabricated and compared using diluted NH3 droplets with various concentrations. The response magnitude, response time, sensitivity, linearity, and limit of detection (LOD) were compared, and it was concluded that the C-type PCF sensor exhibited superior performance. By applying a C-Type PCF sensor, we confirmed the detection performance of 12 types of floating HNS and the response of the sensor with selectivity according to the degree of polarity.

A study on Nano-convergence material technology of semiconductive flame retardant compound to improve impact resistance and electrical properties (내충격성 및 전기적 특성 향상을 위한 반도전성 난연컴파운드의 나노융복합 소재기술에 대한 연구)

  • Han, Jae-Gyu;Jeon, Geun-Bae;Park, Dong-Ha
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.193-198
    • /
    • 2021
  • In this study, a nano-convergence material technology that can satisfy the superior impact resistance and electrical properties of the semiconducting flame retardant compound used in the Oversheath layer of Extra-high voltage cables was studied. When some of the carbon black used in the semiconducting flame-retardant compound was replaced with CNT (carbon nano tube), the change in physical properties was analyzed. Through the application of carbon nanotubes with remarkably excellent electrical properties, even a small amount of conductive filler formulations can provide superior electrical properties. In addition, as the total filler amount is reduced based on the compound, the workability is improved, and in particular, flexibility and impact resistance are improved, which is expected to contribute to the improvement of the durability of the cable.