Browse > Article
http://dx.doi.org/10.14478/ace.2016.1040

Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption  

Yoo, Hyun-woo (Siontech)
Kang, Ji-hyun (Siontech)
Park, Nam-soo (Siontech)
Kim, Tae-il (Siontech)
Kim, Min-Il (Department of Industrial System Engineering, Chungnam National University)
Lee, Young-Seak (Department of Industrial System Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.4, 2016 , pp. 386-390 More about this Journal
Abstract
The surface of carbon nanotubes (CNTs) was modified by fluorination and applied to conductive materials to improve the energy efficiency of a capacitive desalination (CDI) electrode. CNTs were fluorinated at room temperature with a mixed gas of fluorine and nitrogen, and activated carbon based CDI electrodes were then prepared by adding 0-0.5 wt% of untreated CNTs or fluorinated CNTs with respect to the activated carbon. Fluorinated CNTs showed improved dispersibility in the electrode and also slurry as compared to untreated CNTs, which was confirmed by the zeta potential and scanning electron microscopy. Fluorinated CNTs added electrodes showed higher desalination efficiency but lower energy consumption than those of using untreated CNTs added electrodes. This was attributed to the decrease in the resistance of CDI electrodes due to the improved dispersibility of CNTs by fluorination.
Keywords
carbon nanotube; fluorination; desalination; surface treatment; zeta potential;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011).   DOI
2 E. J. Park, L. H. Bac, J. S. Kim, Y. S. Kwon, J. C. Kim, H. S. Choi, and Y. H. Chung, Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid, J. Korean Powder Metall. Inst., 16, 217-222 (2009).   DOI
3 H. J. Ha, Y. C. Kong, K. H. Do, and S. P. Jang, Experimental Investigation on Thermal Characteristics of Heat Pipes Using Water-based MWCNT Nanofluids, Korean J. Air Cond. Refrig. Eng., 23, 528-534 (2011).   DOI
4 Z. Peng, D. Zhang, L. Shi, and T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22, 6603-6612 (2012).   DOI
5 K. Dermentzis and K. Ouzounis, Continuous capacitive deionization-electrodialysis reversal through electrostatic shielding for desalination and deionization of water, Electrochim. Acta, 53, 7123-7130 (2008).   DOI
6 R. Zhao, P. M. Biesheuvel, and A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5, 9520-9527 (2012).   DOI
7 Y. Liu, T. Lu, Z. Sun, D. H. C. Chua, and L. Pan, Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization, J. Mater. Chem. A, 3, 8693-8700 (2015).   DOI
8 D. J. Lee, M. S. Kang, S. H. Lee, and J. S. Park, Application of capacitive deionization for desalination of mining water, J. Korean Electrochem. Soc., 17, 37-43 (2014).   DOI
9 Y. Oren, Capacitive deionization (CDI) for desalination and water treatment past, present and future (a review), Desalination, 228, 10-29 (2008).   DOI
10 P. F. Cai, C. J. Su, W. T. Chang, F. C. Chang, C. Y. Peng, I. W. Sun, Y. L. Wei, C. J. Jou, and H. P. Wang, Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene, Mar. Pollut. Bull., 85, 733-737 (2014).   DOI
11 A. Omosebi, X. Gao, J. Landon, and K. Liu, Asymmetric Electrode Configuration for Enhanced Membrane Capacitive Deionization, Appl. Mater. Interfaces, 6, 12640-12649 (2014).   DOI
12 Y. Zhang, L. Zou, B. P. Ladewig, and D. Mulcahy, Synthesis and characterisation of superhydrophilic conductive heterogeneous PANI/PVDF anion-exchange membranes, Desalination, 362, 59-67 (2015).   DOI
13 T. Y. Kim, Analysis of influential factors on deionization capacity and rate in capacitive deionization, PhD Dissertation, Seoul National University, Seoul, Korea (2014).
14 J. S. Kim and J. H. Choi, Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications, J. Membr. Sci., 355, 85-90 (2010).   DOI
15 H. Li and L. Zou, Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination, Desalination, 275, 62-66 (2011).   DOI
16 M. Mossad and L. Zou, Study of fouling and scaling in capacitive deionization by using dissolved organic and inorganic salts, J. Hazard. Mater., 244-245, 387-393 (2013).   DOI
17 J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI), Macromol. Res., 23, 360-366 (2015).   DOI
18 J. A. Lim, N. S. Park, J. S. Park, and J. H. Choi, Fabrication and characterization of a porous carbon electrode for desalination of brackish water, Desalination, 238, 37-42 (2009).   DOI
19 G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, and J. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 22, 21819-21823 (2012).   DOI
20 C. J. Gabelich, T. D. Tran, and I. H. "Mel" Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010-3019 (2002).   DOI
21 H. Li, L. Zou, L. Pan, and Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol., 44, 8692-8697 (2010).   DOI
22 L. Wang, M. Wang, Z. H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21, 18295-18299 (2011).   DOI
23 E. Garcia-Quismondo, R. Gomez, F. Vaquero, A. L. Cudero, J. Palma, and M. Anderson, New testing procedures of a capacitive deionization reactor, Phys. Chem. Chem. Phys., 15, 7648-7656 (2013).   DOI
24 P. Potschke, A. R. Bhattacharyya, and A. Janke, Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion, Eur. Polym. J., 40, 137-148 (2004).   DOI
25 D. S. Hecht, A. M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey, and S. Risser, High conductivity transparent carbon nanotube films deposited from superacid, Nanotechnology, 22, 075201 (2011).   DOI
26 G. W. Lee and J. T. Han, Dispersion of Carbon Nanotubes (CNTs) and CNT-based Transparent Conductive Films, Korean Ind. Chem. News, 10, 8-19 (2007).
27 J. S. Im, I. J. Park, S. J. In, T. Kim, and Y. S. Lee, Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex, J. Fluor. Chem., 130, 1111-1116 (2009).   DOI