Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.101

Recent Progress in Conductive Polymer-based Membranes  

Park, Shinyoung (Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.31, no.2, 2021 , pp. 101-119 More about this Journal
Abstract
The demand for clean water is virtually present in all modern human societies even as our society has developed increasingly more advanced and sophisticated technologies to improve human life. However, as global climate change begins to show more dramatic effects in many regions in the world, the demand for a cheap, effective way to treat wastewater or to remove harmful bacteria, microbes, viruses, and other solvents detrimental to human health has continued to remain present and remains as important as ever. Well-established synthetic membranes composed of polyaniline (PANI), polyvinylidene fluoride (PVDF), and others have been extensively studied to gather information regarding the characteristics and performance of the membrane, but recent studies have shown that making these synthetic membranes conductive to electrical current by doping the membrane with another material or incorporating conductive materials onto the surface of the membrane, such as allotropes of carbon, have shown to increase the performance of these membranes by allowing the adjustability of pore size, improving antifouling and making the antibacterial property better. In this review, modern electrically conductive membranes are compared to conventional membranes and their performance improvements under electric fields are discussed, as well as their potential in water filtration and wastewater treatment applications.
Keywords
conducting polymer; polypyrrole (PPy); PANI; PVDF; membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. S. Yun, S. I. Cheong, and J. W. Rhim, "Effect of ion exchange capacity on salt removal rate in membrane capacitive deionization process", Membr. J., 28, 332 (2018).
2 P. Formoso, E. Pantuso, G. De Filpo, and F. P. Nicoletta, "Electro-conductive membranes for permeation enhancement and fouling mitigation: A short review", Membr. J., 7, 39 (2017).
3 S. F. Anis, R. Hashaikeh, and N. Hilal, "Functional materials in desalination: A review", Desalination, 468, 114077 (2019).
4 M. R. Ataabadi and A. H. Behroozi, "Improvement in microfiltration process of oily wastewater: A comprehensive review over two decades", J. Environ. Chem. Eng., 9, 104981 (2021).
5 C. Thamaraiselvan, J. Wang, D. K. James, P. Narkhede, S. P. Singh, D. Jassby, J. M. Tour, and C. J. Arnusch, "Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology", Mater. Today, 34, 115 (2020).   DOI
6 S. J. Han and J. S. Park, "Measurement technique of membrane fouling in processes utilizing ion-conducting polymer membranes", Membr. J., 27, 434 (2017).   DOI
7 E. Eray, V. M. Candelario, V. Boffa, H. Safafar, D. N. ostedgaard-Munck, N. Zahrtmann, H. Kadrispahic, and M. K. Jorgensen, "A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives", Chem. Eng. J., 414, 128826 (2021).
8 S. Leaper, A. Abdel-Karim, and P. Gorgojo, "The use of carbon nanomaterials in membrane distillation membranes: A review", Front. Chem. Sci. Eng. (2021).
9 M. H. O. Rashid and S. F. Ralph, "Carbon nanotube membranes: Synthesis, properties, and future filtration applications", Nanomaterials, 7, 99 (2017).   DOI
10 S. P. Nunes, "Can fouling in membranes be ever defeated?", Curr. Opin. Chem. Eng., 28, 90 (2020).   DOI
11 P. S. Goh, A. K. Zulhairun, A. F. Ismail, and N. Hilal, "Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review", Desalination, 468, 114072 (2019).
12 X. Tan, C. Hu, Z. Zhu, H. Liu, and J. Qu, "Electrically pore-size-tunable polypyrrole membrane for antifouling and selective separation", Adv. Funct. Mater., 29, 1903081 (2019).   DOI
13 K. Roy, A. Mukherjee, N. R. Maddela, S. Chakraborty, B. Shen, M. Li, D. Du, Y. Peng, F. Lu, and L. C. Garcia Cruzatty, "Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment - A review", J. Environ. Chem. Eng., 8, 103572 (2020).
14 K. Dutta and D. Rana, "Polythiophenes: An emerging class of promising water purifying materials", Eur. Polym. J., 116, 370 (2019).
15 Z. Yang, X. H. Ma, and C. Y. Tang, "Recent development of novel membranes for desalination", Desalination, 434, 37 (2018).   DOI
16 J. Liu, C. Tian, J. Xiong, B. Gao, S. Dong, and L. Wang, "Polypyrrole vapor phase polymerization on PVDF membrane surface for conductive membrane preparation and fouling mitigation", J. Chem. Technol. Biotechnol., 93, 683 (2018).
17 C. Li, X. Guo, X. Wang, S. Fan, Q. Zhou, H. Shao, W. Hu, C. Li, L. Tong, R. R. Kumar, and J. Huang, "Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance", Electrochim. Acta, 287, 124 (2018).   DOI
18 J. Liu, C. Tian, J. Xiong, and L. Wang, "Polypyrrole blending modification for PVDF conductive membrane preparing and fouling mitigation", J. Colloid Interface Sci., 494, 124 (2017).   DOI
19 M. Aslam, R. Ahmad, and J. Kim, "Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment", Sep. Purif. Technol., 206, 297 (2018).   DOI
20 S. Yadav, H. Saleem, I. Ibrar, O. Naji, A. A. Hawari, A. A. Alanezi, S. J. Zaidi, A. Altaee, and J. Zhou, "Recent developments in forward osmosis membranes using carbon-based nanomaterials", Desalination, 482, 114375 (2020).
21 H. E. Karahan, K. Goh, C. Zhang, E. Yang, C. Yildirim, C. Y. Chuah, M. G. Ahunbay, J. Lee, S. B. Tantekin-Ersolmaz, Y. Chen, and T. H. Bae, "MXene materials for designing advanced separation membranes", Adv. Mater., 32, 1906697 (2020).   DOI
22 M. R. Mahdavi, M. Delnavaz, V. Vatanpour, and J. Farahbakhsh, "Effect of blending polypyrrole coated multiwalled carbon nanotube on desalination performance and antifouling property of thin film nanocomposite nanofiltration membranes", Sep. Purif. Technol., 184, 119 (2017).   DOI
23 G. Zhen, Y. Pan, X. Lu, Y.Y. Li, Z. Zhang, C. Niu, G. Kumar, T. Kobayashi, Y. Zhao, and K. Xu, "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives", Renew. Sust. Energy Rev., 115, 109392 (2019).
24 J. Lee, I. S. Kim, M. H. Hwang, and K. J. Chae, "Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: A short review", Environ. Sci. Water Res. Technol., 6, 1765 (2020).
25 M. Mukherjee and S. De, "Robust self-cleaning polypyrrole-polysulfone blend hollow fiber membrane for biofouling mitigation", J. Chem. Technol. Biotechnol., 93, 3185 (2018).
26 Z. Y. Guo, X. S. Yuan, H. Z. Geng, L. D. Wang, L. C. Jing, and Z. Z. Gu, "High conductive PPy-CNT surface-modified PES membrane with anti-fouling property", Appl. Nanosci. (Switzerland), 8, 1597 (2018).   DOI
27 L. L. Xu, S. Shahid, D. A. Patterson, and E. A. C. Emanuelsson, "Flexible electro-responsive in-situ polymer acid doped polyaniline membranes for permeation enhancement and membrane fouling removal", J. Membr. Sci., 578, 263 (2019).   DOI
28 W. Duan, A. Ronen, S. Walker, and D. Jassby, "Polyaniline-coated carbon nanotube ultrafiltration membranes: Enhanced anodic stability for in situ cleaning and electro-oxidation processes", ACS Appl. Mater. Interfaces, 8, 22574 (2016).
29 K. Wang, L. Xu, K. Li, L. Liu, Y. Zhang, and J. Wang, "Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation", J. Membr. Sci., 371, 570 (2019).
30 B. Jiang, B. Wang, L. Zhang, Y. Sun, X. Xiao, N. Yang, and H. Dou, "Improvement of antifouling performance of poly(l-lactic acid) membranes through incorporating polyaniline nanoparticles", J. Appl. Polym. Sci., 134, 44452 (2017).
31 B. Li, D. Sun, B. Li, W. Tang, P. Ren, J. Yu, and J. Zhang, "One-step electrochemically prepared graphene/polyaniline conductive filter membrane for permeation enhancement by fouling mitigation", Langmuir, 36, 2209 (2020).   DOI
32 Y. Wang, H. Jia, J. Wang, B. Cheng, G. Yang, and F. Gao, "Impacts of energy distribution and electric field on membrane fouling control in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system", Bioresour. Technol., 269, 339 (2018).   DOI
33 A. Ronen, W. Duan, I. Wheeldon, S. Walker, and D. Jassby, "Microbial attachment inhibition through low-voltage electrochemical reactions on electrically conducting membranes", Environ. Sci. Technol., 49, 12741 (2015).   DOI
34 C. Li, X. Guo, X. Wang, S. Fan, Q. Zhou, H. Shao, W. Hu, C. Li, L. Tong, R. R. Kumar, and J. Huang, "Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance", Electrochim. Acta, 287, 124 (2018).   DOI
35 C. Hu, M. Li, J. Sun, R. Liu, H. Liu, and J. Qu, "NOM fouling resistance in response to electric field during electro-ultrafiltration: Significance of molecular polarity and weight", J. Colloid Interface Sci., 539, 11 (2019).   DOI
36 A. Dudchenko, J. Rolf, K. Russell, W. Duan, and D. Jassby, "Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes", J. Membr. Sci., 468, 1 (2014).   DOI