DOI QR코드

DOI QR Code

A study on Nano-convergence material technology of semiconductive flame retardant compound to improve impact resistance and electrical properties

내충격성 및 전기적 특성 향상을 위한 반도전성 난연컴파운드의 나노융복합 소재기술에 대한 연구

  • Received : 2020.11.16
  • Accepted : 2021.01.20
  • Published : 2021.01.28

Abstract

In this study, a nano-convergence material technology that can satisfy the superior impact resistance and electrical properties of the semiconducting flame retardant compound used in the Oversheath layer of Extra-high voltage cables was studied. When some of the carbon black used in the semiconducting flame-retardant compound was replaced with CNT (carbon nano tube), the change in physical properties was analyzed. Through the application of carbon nanotubes with remarkably excellent electrical properties, even a small amount of conductive filler formulations can provide superior electrical properties. In addition, as the total filler amount is reduced based on the compound, the workability is improved, and in particular, flexibility and impact resistance are improved, which is expected to contribute to the improvement of the durability of the cable.

본 연구에서는 초고압(Extra High Voltage) 케이블의 방식층(Oversheath)에 사용되는 반도전성 난연컴파운드의 보다 우수한 내충격성 및 전기적 특성을 만족할 수 있는 나노융복합 소재기술에 대해 연구하였다. 반도전성 난연컴파운드에 사용되는 도전성 카본블랙 일부를 CNT(carbon nano tube)로 대체하였으며, 이때 물성변화를 분석하였다. 전기적 특성이 현격하게 뛰어난 탄소나노튜브의 적용을 통해 소량의 전도성필러 처방으로도 보다 우수한 전기적 특성을 부여할 수 있게 된다. 또한, 컴파운드 기준 전체 필러량이 감량됨에 따라서 가공성이 향상되며, 특히 유연성 및 내충격성이 향상되기 때문에 케이블의 내구성 향상에 기여할 것으로 기대된다.

Keywords

References

  1. Min-Ho Lee. (2015). Flame Retardancy and Physical Properties of Ethylene Vinyl Acetate/Aluminum Trihydroxide Composites. Polymer(Korea), 39(3), 433-440. DOI : https://doi.org/10.7317/pk.2015.39.3.433
  2. Chen, H. et al. (2016). Effect of particle size on the flame retardancy of poly(butylene succinate)/Mg(OH)2 composites. Fire and Materials. Wiley, 40(8), 1090-1096. DOI : https://doi.org/10.1002/fam.2355
  3. M.A. Cardenas. (2008). Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites - Effect of particle size and surface treatment of ATH filler. Polymer Degradation and Stability, 93(11), 2032-2037. DOI : https://doi.org/10.1016/j.polymdegradstab.2008.02.015
  4. J. Santos. (2015). Using the carbon nanotube (CNT)/CNT interaction to obtain hybrid conductive nanostructures. AIP Conference Proceedings, 1664(1), 070021(0) - 070021(5) DOI : https://doi.org/10.1063/1.4918456
  5. Hee-Jeong Won. (2014). A Study on the Effect of Fiber Orientation on Impact Strength and Thermal Expansion Behavior of Carbon Fiber Reinforced PA6/PPO Composites. Composites Research, 27(2), 52-58 DOI : https://doi.org/10.7234/composres.2014.27.2.052
  6. Kyoung-Jae Kim, (2016). The Effect of CNTs Diameters on Electrical Resistivity, Thermal Conductivity and Tensile Strength of CNT -polyamide Composites. Journal of the Korean Society of Mechanical Technology, 18(2), 250-255. DOI : 10.17958/ksmt.18.2.201604.250
  7. Abbasi, S. H. et al. (2011). Effect of aspect ratio, surface modification and compatibilizer on the mechanical and thermal properties of ldpe-mwcnt nanocomposites. e-Polymers. Walter de Gruyter GmbH, 11(1). DOI : 10.1515/epoly.2011.11.1.722
  8. Choi, Y. J. et al. (2017). Mechanical Properties of Epoxy Composites Reinforced with Carbon Nanotube and Oxyfluorinated Powdered-carbon Fiber. Polymer Korea. The Polymer Society of Korea, 41(5), 835-843. DOI : 10.7317/pk.2017.41.5.835
  9. Teng Gao, Jae-Ung Cho. (2014). A Study on Impact Property of Sandwich Composite of Carbon-Fiber-Reinforced Plastic. Journal of the Korean Society of Mechanical Technology, 16(2), 1339-1344. DOI : 10.17958/ksmt.16.2.201404.1339
  10. Tang, H. et al. (2017). Environment-friendly, flame retardant thermoplastic elastomer-magnesium hydroxide composites. Functional Materials Letters. World Scientific Pub Co Pte Lt, 10(04), 1750042. DOI : 10.1142/s1793604717500424
  11. Byoung-Jun Lee. (2016). Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant. KSIEC, 27(6), 577-582 DOI : 10.14478/ace.2016.1079
  12. Seong-Su Choi. (2002). A Study on the Flame Retardant Properties of EPDM Rubber Mixed with Phosphorus and Halogen Compound. Elastomer, 37(4), 224-233 UCI : G704-000728.2002.37.4.001
  13. Du, D. et al. (2009). Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection. Analytical Chemistry. American Chemical Society (ACS), 81(22), 9314-9320. DOI : 10.1021/ac901673a
  14. Kyung-Min Shin. (2018). Study on the Melt Flow and Physical Properties of Nylon 66/Carbon Filler Composite with Processing Aid. Polymer(Korea), 42(3). 478-484 DOI : 10.7317/pk.2018.42.3.478
  15. Zare Yasser. (2019). The complex viscosity of polymer carbon nanotubes nanocomposites as a function of networks properties. Carbon Letters, 29(5). 535-545 https://doi.org/10.1007/s42823-019-00050-y