Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.4.255

Liquid electrochemical sensors using carbon nanotube film  

Noh, Jaeha (Major of Electronic Materials Engineering, Korea and Maritime Ocean University)
An, Sangsu (Major of Electronic Materials Engineering, Korea and Maritime Ocean University)
Lee, Changhan (Major of Electronic Materials Engineering, Korea and Maritime Ocean University)
Lee, Sangtae (Department of offshore plant management, Korea and Maritime Ocean University)
Lee, Moonjin (Maritime Safety and Environmental Research Division, KRISO)
Seo, Dongmin (Maritime Safety and Environmental Research Division, KRISO)
Chang, Jiho (Major of Electronic Materials Engineering, Korea and Maritime Ocean University)
Publication Information
Journal of Sensor Science and Technology / v.30, no.4, 2021 , pp. 255-260 More about this Journal
Abstract
We studied electrochemical sensors using printed carbon nanotube (CNT) film on a polyethylene terephthalate (PET) substrate. Multiwalled CNT films were printed on a PET substrate to study its feasibility as hazardous and noxious substances (HNS) detection sensor. The printed CNT film (PCF) with a 50 ㎛ thickness exhibited a specific resistance of 230 ohm. To determine the optimum sensor structure, a resistance-type PCF sensor (R-type PCF sensor) and a conductive-type PCF sensor (C-type PCF sensor) were fabricated and compared using diluted NH3 droplets with various concentrations. The response magnitude, response time, sensitivity, linearity, and limit of detection (LOD) were compared, and it was concluded that the C-type PCF sensor exhibited superior performance. By applying a C-Type PCF sensor, we confirmed the detection performance of 12 types of floating HNS and the response of the sensor with selectivity according to the degree of polarity.
Keywords
Carbon nanotubes (CNT); Printed CNT film (PCF); Electrochemical sensor; HNS; Limit of detection (LOD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Chen, P. Yang, W. Shen, C. Zhu, D. Lv, R. Tan, and W. Song, "Flexible room temperature ammonia gas sensor based on in suit polymerized PANI/PVDF porous composite film", J. Mater. Sci.: Mater. Electron., Vol. 31, pp. 11870-11877, 2020.   DOI
2 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, "Nanotube Molecular Wires as Chemical Sensors", Science., Vol. 287, No. 5453, pp. 622-625, 2000.   DOI
3 A. D. Rushi, K. P. Datta, P. S. Ghosh, A. Mulchandani, and M. D. Shirsat, "Selective Discrimination among Benzene, Toluene, and Xylene: Probing Metalloporphyrin-Functionalized Single-Walled Carbon Nanotube-Based Field Effect Transistors", J. Phys. Chem. C., Vol. 118, No. 41, pp. 24034-24041, 2014.   DOI
4 P. Li, C. M. Martin, K. K. Yeung, and W. Xue, "Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors", Biosensors, Vol. 1, No. 1, pp. 23-35, 2011.   DOI
5 Y. R. Kim, T. W. Kim, M. H. Son, S. W. Oh, and M. J. Lee, "A study on prioritization of HNS management in Korean waters", J. Korean Soc. Mar., Vol. 21, No. 6, pp. 672-678, 2015.
6 S. Petit, P. Laurens, M. G. Barthes-Labrousse, J. Amouroux, and F. Arefi-Khonsari, "Al/PET adhesion: role of an excimer laser pretreatment of PET prior to aluminum thermal evaporation", J. Adhes. Sci. Technol., Vol. 17, No. 3, pp. 353-368, 2003.   DOI
7 J. Y. Zhou, J. L. Bai, H. Zhao, Z. Y. Yang, X. Y. Gu, B. Y. Huang, and E. Q. Xie, "Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes", Sens. Actuators B-Chem., Vol. 265, pp. 273-284, 2018.   DOI
8 V. Schroeder, S. Savagatrup, M. He, S. Lin, and T. M. Swager, "Carbon Nanotube Chemical Sensors", Chem. Rev., Vol. 119, No. 1, pp. 599-663, 2018.   DOI
9 M. B. Gumpu, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan, "A review on detection of heavy metal ions in water - An electrochemical approach", Sens. Actuator B-Chem., Vol. 213, pp. 515-533, 2015.   DOI
10 P. P. Prosini, C. Cento, M. Carewska, and A. Masci, "Electrochemical performance of Li-ion batteries assembled with water-processable electrodes", Solid State Ion., Vol. 274, pp. 34-39, 2015.   DOI
11 S. Hong, Y. Hong, Y. Jeong, G. Jung, W. Shin, J. Park, and J. H. Lee, "Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect", Sens. Actuator B-Chem., Vol. 300, p.127040, 2019.   DOI
12 S. W. Lee, K. K. Kim, Y. Cui, S. C. Lim, Y. W. Cho, S. M. Kim, and Y. H. Lee, "Adhesion Test of Carbon Nanotube Film Coated onto Transparent Conducting Substrates", Nano, Vol. 05, No. 03, pp. 133-138, 2010.   DOI
13 Y. R. Kim, M. Lee, J. Y. Jung, T. W. Kim, and D. Kim, "Initial environmental risk assessment of hazardous and noxious substances (HNS) spill accidents to mitigate its damages", Mar., Vol. 139, pp. 205-213, 2019.
14 M. A. Riheen, T. K. Saha, and P. K. Sekhar, "Inkjet Printing on PET Substrate", J. Electrochem. Soc., Vol. 166, No. 9, pp. B3036-B3039, 2019.
15 N. aran, K. arikh, D. S. Suh, E. Munoz, H. Kolla, and S. K. Manohar, "Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates", J. Am. Chem. Soc., Vol. 126, No. 14, pp. 4462-4463, 2004.   DOI
16 Y. Zhang, Z. Kang, and T. Bessho, "Two-component spincoated Ag/CNT composite films based on a silver heterogeneous nucleation mechanism adhesion-enhanced by mechanical interlocking and chemical grafting", Nanotechnology, Vol. 28, No. 10, pp. 105607, 2017.   DOI
17 K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, and T. M. Swager, "Mechanical Drawing of Gas Sensors on Paper", Angew. Chem., Vol. 124, No. 43, pp. 10898-10903, 2012.   DOI
18 S. G. Wang, Q. Zhang, D. J. Yang, P. J. Sellin, and G. F. Zhong, "Multi-walled carbon nanotube-based gas sensors for NH3 detection", Diam. Relat. Mater., Vol. 13, No. 4-8, pp. 1327-1332, 2004.   DOI
19 T. Zhang, S. Mubeen, N. V. Myung, and M. A. Deshusses, "Recent progress in carbon nanotube-based gas sensors." Nanotechnology, Vol. 19, No. 33, p. 33200, 2008
20 N. H. Quang, M. Van Trinh, B. H. Lee, and J. S. Huh, "Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles", Sens. Actuator B-Chem., Vol. 113, No. 1, pp. 341-346, 2006.   DOI
21 M. Tonezzer, "Selective gas sensor based on one single SnO2 nanowire", Sens. Actuators B Chem., Vol. 288, pp, 53-59, 2019.   DOI
22 A. P. P. Alves, J. P. C. Trigueiro, H. D. R. Calado, and G. G. Silva, "Poly(3-hexylthiophene)-multi-walled carbon nanotube (1:1) hybrids: Structure and electrochemical properties", Electrochim. Acta., No. 209, pp. 111-120, 2016.   DOI
23 P. R. Chalker, S. J. Bull, and D. S. Rickerby, "A review of the methods for the evaluation of coating-substrate adhesion", Mater. Sci. Eng. A., No. 140, pp. 583-592, 1991.   DOI
24 N. A. Bohari, S. Siddiquee, S. Saallah, M. Misson, and S. E. Arshad, "Optimization and Analytical Behavior of Electrochemical Sensors Based on the Modification of Indium Tin Oxide (ITO) Using PANI/MWCNTs/AuNPs for Mercury Detection", Sensors, Vol. 20, No. 22, pp. 6502, 2020.   DOI
25 A. Yamada, Y. Kato, T. Yoshikuni, Y. Tanaka, and N. Tanaka, "Computer-assisted measurement of ion-diffusion coefficients by use of the cottrell equation", Anal. Chim. Acta., Vol. 112, No. 1, pp. 55-63, 1979.   DOI
26 Y. R. Kim, J. Y. Choi, M. H. Son, S. W. Oh, M. J. Lee, and S. J. Lee, "Prioritizing noxious liquid substances (NLS) for preparedness against potential spill incidents in Korean coastal waters", J. Korean Soc. Mar., Vol. 22, pp. 846-853, 2016.
27 M. I. Bodnarchuk, M. V. Kovalenko, S. Pichler, G. Fritz-Popovski, G. Hesser, and W. Heiss, "Large-Area Ordered Superlattices from Magnetic Wustite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting", ACS Nano, Vol. 4, No. 1, pp. 423-431, 2010.   DOI