Browse > Article
http://dx.doi.org/10.3795/KSME-A.2013.37.12.1465

Electrical and Mechanical Properties of Carbon Particle Reinforced Rubber for Electro-Active Polymer Electrode  

Lee, Jun Man (Dept. of Robotics Engineering, DGIST)
Ryu, Sang Ryeoul (School of Mechanical Engineering, Yeungnam Univ.)
Lee, Dong Joo (School of Mechanical Engineering, Yeungnam Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.37, no.12, 2013 , pp. 1465-1471 More about this Journal
Abstract
The electrical and mechanical properties of room temperature vulcanized (RTV) silicone rubber composites are investigated as functions of multi-walled carbon nanotube (CNT), carbon black (CB), and thinner content. The thinner is used to improve the CNT and CB dispersion in the matrix. The electrical and mechanical properties of the composite with CNT are improved when compared to the composite with CB at the same content. As the thinner content is 80 phr, the electric resistance of the composite decreases significantly with the CNT content and shows contact point saturation of CNT at 2.5 phr. As the thinner content increases, the dispersion of conductive particles improves; however, the critical CB content increases because of the reduction in the CB weight ratio. It is believed that an electrode that needs good flexibility and excellent electrical properties can be manufactured when the amount of CNT and CB are increased with the thinner content.
Keywords
Carbon Nanotube; Carbon Black; Thinner; Electrical Resistance; Silicone Rubber Composite;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Polley, M. H. and Boonstra, B. B. S. T., 1957, Carbon Blacks for Highly Conductive Rubber, Rubber Chem. Technol., Vol. 30, pp. 170-179.   DOI
2 Im, H. G., Kim, H. M. and Kim, J. H., 2008, Dispersity of CNT and GNF on the Polyurethane Matrix: Effect of Polyurethane Chemical Structure, Polymer(Korea), Vol. 32, No. 4, pp. 340-346.   과학기술학회마을
3 Ma, P. C., Kim, J. K. and Tang, B. Z., 2007, "Effects of Silane Functionalization on the Properties of Carbon Nanotube/Epoxy Nanocomposites," Composites Science & Technology, Vol. 67, No. 14, pp. 2965-2972.   DOI   ScienceOn
4 Iijima, S., 1991, Heilcal Microtubules of Graphitic Carbon, Nature, Vol. 354, pp. 56-58.   DOI
5 Lee, G. W. and Han, J. T., 2007, "Dispersion of Carbon Nanotubes (CNTs) and CNT-based Transparent Conductive Films," KIC News, Vol. 10, No. 4, pp. 8-19.
6 Yun, S. J. and Im, H. G., 2010, "Dispersity and Electro-Conductivity of PU Grafted MWCNT/PU Composite via Simple Blending Method," Appl. Chem. Eng., Vol. 21, No. 5, pp. 500-504.
7 Won, J. Y. and Kwon, M. H., 2007, "Evaluation of the Dispersibility of CNT in an Aqueous Medium," Textile Science and Engineering, Vol. 40, No. 2, pp. 443-444.
8 Kim, M. S., Goak, J. C. and Han, J. H., 2008, "Effect of Acid Treatment on Transparent Conductive Films of Single-Walled Carbon Nanotubes Prepared Using Various Surfactants in Aqueous Solutions," KIEEME, Annual Autumn Conference, pp. 396.   과학기술학회마을
9 Oh, W. C., Ko, W. B., and Zhang, F. J., 2010, "The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review," Elastomers and Composites, Vol. 45, No. 2, pp. 80-86.
10 Lee, K. H. and Kim, J. H., 2009, "Study on the Properties of Polystyrene and Styrenic Copolymer Containing Carbon Nanotubes and Nanoclay," J. Korean Ind. Eng. Chem., Vol. 20, No. 5, pp. 493-499.   과학기술학회마을
11 Fakhru'l-Razi, A., Atieh, M. A., Girun, N., Chuah, T. G., El-Sadig, M. and Biak, D. R. A., 2006, "Effect of Multi-wall Carbon Nanotubes on the Mechanical Properties of Natural Rubber," Composite Structures, 75, pp. 496-500.   DOI   ScienceOn
12 Sui, G., Zhong, W. H., Yang, X. P. and Yu, Y. H., 2008, "Curing Kinetics and Mechanical Behavior of Natural Rubber Reinforced with Pretreated Carbon Nanotubes," Materials Science and Engineering A, 485, pp. 524-531.   DOI   ScienceOn
13 Sung, J. H., Lee, D. J., Ryu, S. R. and Cho, Y. S., 2010, "Mechanical Properties of Elastomeric Composites with Atmospheric-Pressure Flame Plasma Treated Multi-Walled Carbon Nanotubes and Carbon Black," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 9, pp. 1209-1215.   과학기술학회마을   DOI   ScienceOn
14 Shin, S. G., 2010, Electrical Conduction Property of the Carbon Black-Filled Polyethylene Matrix Composites Below the Percolation Threshold, Kor. J. Mater. Res., Vol. 20, No. 5, pp. 271-277.   과학기술학회마을   DOI   ScienceOn
15 Yang, J. S., Lee, K. Y. and Park, D. H., 2006, Electrical and Mechanical Properties of Semiconducting Shield for Power Cable by Carbon Nanotube Content, KIEE, Vol. 55, No. 8, pp. 381-386.   과학기술학회마을
16 Park, J. M., Kim, D. S., Kim, S. J., Kim, P. G., Yoon, D. J. and Lawrence D. K., 2007, Local Electronic Transport through a Junction of SWNT Bundles, Composites: Part B, Vol. 38, pp. 847.   DOI   ScienceOn