• Title/Summary/Keyword: component failure

Search Result 724, Processing Time 0.036 seconds

Age Replacement Policy for A System Considering Failure Characteristics of Components (부품(部品)의 고장특성(故障特性)를 고려한 시스템의 수명교환방침(壽命交換方針))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 1993
  • Most systems are composed of components which have different failure chracteristics. Since the failure characteristics of components is different, it is rational and reasonable to establish a maintenance model to be considered repair and replacement policies which are proper to failure characteristics of these components. This paper proposes the age replacement time for a system composed of components which have different failure characteristics. In this model, it is assumed that a system is composed of a critical failure component, a major failure component, minor failure component. If any failure occurs to critical component before its age replacement time, the system should be replaced. If any failure does not occur until its age replacement time, preventive replacement should be performed at age replacement time T. Major component is minimal repaired if any failure occurs during operation. Minor component should be replaced as soon as failure is found. This paper determines the optimal replacement time of the system which minimize, total maintenance cost and initial stock Quantity of minor component within this optimal replacement time. Numerical example illustrates these results.

  • PDF

Maintenance Model for Multi-Component System Considering Failure Types (고장형태(故障形態)를 고려한 다부품장비(多部品裝備)의 보전모형(保全模型))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.33-42
    • /
    • 1990
  • This paper proposes the maintenance model of multi-component system when the failure characteristics and types of components are considered. In this model, it is assumed that a system is composed of a critical component, a major component and a minor component. Also, failure types is classified into major failure and minor failure. If major failure occurs to critical component before system age replacement time, the system is renewed. If major failure does not occur until its age replacement time, preventive maintenance is performed at age replacement time T. Minimal repairs are carried out after each minor failure. Major component is minimal-repaired if any failure is discovered during operation. Minor component should be replaced as soon as any failure is found. This paper determines the optimal replacement time of the system which minimizes total maintenance cost. Numerical example illustrates these results.

  • PDF

Estimation of a Bivariate Exponential Distribution with a Location Parameter

  • Hong, Yeon-Ung;Gwon, Yong-Man
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.89-95
    • /
    • 2002
  • This paper considers the problem of estimating paramaters of the bivariate exponential distribution with a loaction parameter for a two-component shared parallel system using component data from system-level life test terminated at the time of the prespecified number of system failure. In the system-level life testing, there are three patterns of failure types; 1) both component failed 2) both component censored 3) one is failed and the other is censored. In the third case, we assume that the failure time might be known or unknown. The maximum likelihood estimators are obtained for the case of known/unknown failure time when the other component is censored.

  • PDF

종속 고장을 가지는 원형 Consecutive-k-out-of-n:F 시스템의 경제적 설계

  • 윤원영;김귀래;고용석;류기열
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.387-395
    • /
    • 2000
  • Circular consecutive-k-out-of-n:F system when the failure of component is dependent is studied. We assume that the failure of a component in the system increase the failure rate of the survivor which is working just before the failed component. In this case, a mean time to failure (MTTF), a average failure number of the system, and the expected cost per unit time are obtained. Then the minimum number of consecutive failed components to cause system failure to minimize the expected cost per unit time is determined as searching paths to system failure. And various numerical examples are studied.

  • PDF

Optimal Maintenance Scheduling in a Two Identical Component Parallel Redundant System Subject to Exponential Power Hazards

  • El-Damcese, M.A.;Helmy, A.N.
    • International Journal of Reliability and Applications
    • /
    • v.9 no.2
    • /
    • pp.141-152
    • /
    • 2008
  • This paper presents equations, which can be used to evaluate the failure frequency and the failure rate of a two identical component parallel redundant system in which each component can operate in its wear out period, and the failure rate of each component is exponential power distribution. The optimum maintenance interval for a two identical component parallel redundant system can be obtained using these equations. The proposed approach is presented and illustrated using several numerical examples. The optimum maintenance interval for each component in a two identical parallel redundant system will depend on factors such as: failure rate, repair and maintenance times of each component in the parallel redundant systems.

  • PDF

Reliability Estimation of Solder Joint by Using Failure Probability Model (파손확률 모델을 이용한 솔더 조인트의 건전성 평가)

  • Myoung, No-Hoon;Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.365-370
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and solder joint' failure. The first order Taylor series expansion of the limit state function incorporating with Tresca failure criterion is used in order to estimate the failure probability of solder joints under heated condition. Using shear stresses and shear strains appeared on the solder joint, we estimate the failure probability of solder joints with the Tresca failure criterion. The effects of random variables such as CTE, distance of the solder joint from the neutral point(DNP), temperature variation and height of solder on the failure probability of the solder joint are systematically studied by using the failure probability model with first order reliability method(FORM).

  • PDF

Determination of Probability of Component or Subsystem Failure

  • Lee, Seong-cheol
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.121-130
    • /
    • 1993
  • In this paper, we relate the reliability of the system to the reliabilities of the components or subsystems. We discussed the basic concept of system reliability and present a method to determine probabilities of failure of coherent system components under various conditions, especially forcused on probability of component or subsystem failure before system failure. Several examples illustrate the procedure.

  • PDF

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

Estimation of a Bivariate Exponential Distribution with a Location Parameter

  • Hong, Yeon-Ung;Gwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.243-250
    • /
    • 2002
  • This paper considers the problem of estimating parameters of the bivariate exponential distribution with a location parameter for a two-component shared parallel system using component data from system-level life test terminated at the time of the prespecified number of system failure. In the system-level life testing, there are three patterns of failure types ; 1) both component failed 2) both component censored 3) one is failed and the other is censored. In the third case, we assume that the failure time might be known or unknown. The maximum likelihood estimators are obtained for the case of known/unknown failure time when the other component is censored.

  • PDF

Economic design of consecutive k-out-of-n : F system (Consecutive k-out-of-n : F 시스템의 경제적 설계)

  • Yun, Won-Young;Kim, Gue-Rae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.128-135
    • /
    • 2000
  • This paper considers a consecutive k-out-of-n:F system when the failure of a component in the system induces higher failure rate of the preceding survivor. The reliability, mean time to failure(MTTF), and average failure number of a consecutive k-out-of-n:F system are obtained, when the failure of a component increases the failure rate of the survivor which is working just before the failed component. Then the optimal number of consecutive failed components to minimize this long run average cost rate can be obtained. An example is considered to calculate the reliability, MTTF and average failure number of the system. And two procedures that find the optimal number of consecutive failed components are studied. Then, various cases of system parameters are also studied.

  • PDF