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Determination of Probability of
Component or Subsystem Failure

Seong-cheol Lee*

ABSTRACT

In this paper, we relate the reliability of the system to the reliabilities of the components
or subsystems. We discussed the basic concept of system reliability and present a method to
determine probabilities of failure of coherent system components under various conditions,
especially forcused on probability of component or subsystem failure before system failure.

Several examples illustrate the procedure.

1. Introduction

Most reliability calculations are performed assuming that components and systems are
either functioning or failed. This dichotomy is often a resonable assumption, but the
assumption is sometimes made simply because there are no applicable results dealing with
more complicated state spaces.

In many practical situations, one is interested in computing the probability that a given
component or a set of components fails before the system fails. The components or
subsystems of a particular system can be ranked according to their probability of failure
before system failure or before a periodic inspection.
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Such rank is useful in improving system reliability, detecting failed components, and
generating inspection and repair checklists.

One approach to solving this problem is to obtain a joint probability distribution of times
to failure for a given set of components and entire system. This paper extends [6] and
discussed the method of determing the probability of having a given set of components failed
and another set of components working at the time of system failure is based on the notion of
boundary probability.

A method of determining the probability, when the reliability structure of the system
and the joint distribution of component time-to-failure 7, are known is discussed in [6].

The path and cut set method for determing system realiablity (2] is used. Problems
related to the reliability structure of the system are based on (5]. QOur method, applied in
this paper, is futher extended to the case when certain components of the system are given

as either failed or working.

Notation

e, z --th component

(X system structure function

h(P) system reliability

Thie,) reliability importance of component ¢,
T system time-to-failure

T time -to-failure of component e,

f..F..R pdf, cdf, success function of T,
e.(t). &;(t) events that component ¢, is functioning and failed at time ¢.

g event that system is functioning at time ¢

2. Basic concepts of system reliability

In this section, we discussed the deterministic aspects of s-coherent structure. We
assume that components are s-independent.
Suppose that the state r, of the ¢, is binary random variable with

¥, =[1 if ¢; is functioning
0 if e, is failed
similarly, the binary variable ¢ indicates the state of the system

p(X) - [ 1 if the system is functioning
¢ if the system is failed
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The series operator replace # components in series with

¢ (X) = f} % = min(x,, - x,) (2-1)

while the parallel operator replace » components in parallel with
$(X) =[x =1~ [] (1-%) = max(x,, -, x,) (2-2)

where ¢ ( X)) is system structure function and x, is state of component ¢ ;

0 = failed, 1 = function.

And a k-out-of-n structure functions if and only if at least £ of the » components
function. The structure function is given by

(X)) =11 if

R
xr
v
[

0 if
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mq
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The reliability of the system is given by

h(P)=Pi¢(X)=1] =E[¢(X)] (2—-4

When p, =-- = p, = p, we will use the symbol %4(P) as the reliability function of the

structure ¢
Note that for a coherent structure with independent components

I
<

h(0) = E[¢(X) | p,=0,-,p,=0] = ¢ (0
R =E[¢(X)]p, =1L, p,=1] =¢ (1)

I
s

(2-5:

An important and interesting general result concerning the shape of the 4(P) curve is
following.

Theorem 2.1. (Moore and Shannon) Let 2(P,) = p, forsome 0 < p, < 1

h(P)<p for 0<p<p,
hP)>p for p.< p<l

This means that for any network the function #( P)crosses the diagonal line of slop 1 at
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most once in the iﬁterval (0, D.

We shall not present the details of the Moore-Shannon proof, but we shall derive the
result for a more general class of networks.

Lemma 2.2 (Proschan F.) The following identity holds for the reliability function :

WP)=phil,, P)+ (1 —-p) R0, P) (2-6)

The corresponding monotonicity property for reliability function is given following
theorem.

Therom 2.3 Let 2( P) be the reliability function of coherent structure.
Then 2( P) is strictly increasing in each p, for 0< p.< 1

proof. from (2-6)

h
P

D

=h(1,,P) —h{0,, P) (2-7)

)

sothat —h- ~ E[4(1,X) —¢ (0, X)] (2-8)

since ¢ is increasing then
(1, X)—-¢(0,X)=20
Thus equation (2--8) is positive, and the desired result follows.

Next, we develop a measure of the reliability importance of each component, which
takes into account component reliability as well as system structure. Such a measure can be
very useful in system analysis in determining those components on which additional reserch
and development effort can be most profitably expended. It would seem reasonable to
measure the importance of a component in contributing to system reliability by the rate at
which system reliability improves as the reliability of the component improves. From
equation (2 —6) we present the following definition.

The reliability importance I%(e,) of component ; is given by

_ Ch{P) _
Thie) = =35 (2-9)
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Example 2.4. The bridge structure is shown in the following diagram

Fig1. 5-component Bridge system

the minimal path sets are :
P, ={e.e, |, P, ={e,,es}. P, ={e,, e, es}, P, ={e,,e, e, }
System structure function

P(X)=x.%, I X:%; I X1%3X5 [] XXX,

[1““(1“XLX¢)(1‘_952X5)] 11 [1'-(]—'x1x3x5) (1'x2x55x4)]
= (%, + 2,05 —x%,x,x05) H (rx,xs +x,%,%, —x,%x,x%x,)

1-[1—-(x,x, +o,xs —x,x,x,x5) ) [ 1=(x 23205 +¥,0,0, —%,%,%, °x )

System reliability

h( P) =1 - ‘ 1- (p,[h + pzps - p|p2p4pa) ] [ 1- (Pl,f):;.i?s + ng;;p4
—ppppD )

Then, from (2-9)
reliability importance of ¢, is

Ine,) = “2LL

¢

= (pl _p2p4pr.) (1*131?;;?5 + D.bsb, _plpepagpﬂ
+ (1—P1P4 —p.Ps _p1p2p4p5) (p:sps “f)zp:;zp1)

Simitarly, we calculate reliability importance of other components.
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3. Probability of component or subsystem failure before system
failure

Here we compute the probability that component ¢; will be failed at the time of system

failure P, [T, < T].
The event {7, < T} encompasses all the cases when ¢, faills before system failure

P IT.<T)=f"PAT.<TI|T, =t}f (Dat
= [P {gW) e} f, Wat (3-1)
The event {T. = T } encompasses all the cases when the system functions if

component ¢, functions and system fails when component ¢; fails.
From the definition of the boundary condition for component ¢, we have follow:ing

equation :
P.T =71=f"f (OP(B ()dt (3-2:
where P[B, ()] = P, {g®) 1 e@)}— P, {gt) | e(t)} (3-3:
from (3—1), {(3—3!
P, [T <T)=P[T.<T]+P.T, =T]
(3-4)

= f”[P, {gt) e ()} f, (t)at

Example 3.1 (1-out-of-n:F') consider an #-component series system shown in figure 2.

e, e, e,

) O_ fer ——- -——-O.____._

Fig 2. n-component series system

PlgW e t)}= r[ R, (1)

PES)

Hence

i

P.[T. <ti=["f @[l R®at

i1#1

~126--



1993+ 1249 WESKEFREHE 21 A28

Example 3.2 Consider example 2.4
It can be easily verified that for =1

we have :
PlgWle, W)i=1—-{F,OF,(OF, )+ F,OR,(DF () F,(t)

+ R WF,(#)F,(t)}
PIT <T]l= [ A){1-(F,(OF,(OF,@R(#) + F,(2) }dt

Example 3.3 (1-out-of-#:G) consider an #-component parallel system

()
-—(O—
o,

—_ (:) ——

Fig 3. =z-component parallel system

since foranyi P, |gt)le, ()} =1

we have
PIT, <T|=f fivdt=1

Now we investigate the probability that a set of component has failed at the time of

system failure : whereas another set of component is functioning. That is, we want 1o

determine the probability of a random event of the type

E={nNnT<T, N T,>T, N T,<wx}

€E€A €;€RB epe

where A, B, C are partitions of the set of all components.(A is the set of components
failed before the system failure, and B is the set of components functioning at the time of

systim failure.)

Em={Tm:Tv ﬂT,<T.ﬂT,>T,ﬂT,¢<30}

A, e)-EB epeC
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where A,, is the set A without component ¢,,.
E can be represented as a disjoint union of the following events :

E=E U( U E)UE" {3-5)
e A
where E" = | (\ T,<T, N T,>T, N T,<x}
€A P'YGB epeC

and £’ includes all events from E which do not belong to E,, or E".
Since E’ is a disjoint union of the events where two or more components fail

simultaneously at time 7.
then P, [E" =0 (3-6)
From (3-5) and (3—6) we have

P[E]= ¥ P {E,}+P [E"] (3-7)

€ A

For given m, P.{ E,, }is the conditional boundary probability for component ¢,,, under
the condition that components in the set A, have failed before system failure occurred and
components in set B are still functioning at the time of system failure.

Therefore

P.LE,|=[ f.() T1 F.(t) T1 R,) P,[ B, | G(t)]dt (3-8

€A, ¢;€B

where G = A, U B

The conditional boundary probability P,[ B,, | G(¢)]is

PIB, 1G] =P igt)le, ), N et N o))

“ AL e‘/eB

~P g N el N )] (3-9)

eJEB

PLE = [ © AW Il FO Il ROP[BIG ®]dt  (3-10)

epid

where G' = AU B
—128 -~
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P,[ B, | G' (¢)]is computed similarly as in (3—9)
We obtained P, { £ } by combining (3—-7) — (3-10)

Example 3.4 consider example 3.2

Let A={13},B=1{4},C =1{2,5}

The following relations hold :

PIB |Gt =P {gt) e (t)e, ) e, )}
— P, {gt) e, (t)e,(t) et}

(1 —-F,(WOF )] — R(t) = F,(t)F.(t)

I

PIB, |Gty =P {gt) | e,(t),e,(t)e,(t)}

- P{g(t) ' E;;(t), el(t)* e4(t)}

PIB I1G ()] =P {gt)e,(t)e t)e,(t)e, )}

—~ Plgt) e, (t) e (t) e, (1) e, )
1-0=1

I

P[B; |G ()]

I

P lgt)es(t),e (), e,(the, ()}

- P, [g(t) | e;t). e (t),e;(t), e, ()]

It

Rz(t) - Rg(t) = ()
Hence

P [E]l= [ [fWOF.(ORt)+ £,(OF,(1)] F,(t)R,(H)dt

it

We hope that our method can be extended to the case of non-s-independent randorn
variables.
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