• Title/Summary/Keyword: complex space form

Search Result 336, Processing Time 0.03 seconds

ON REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM (II)

  • Pyo, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.369-383
    • /
    • 1994
  • A complex n-dimensional Kahler manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}$ (c). A complete and simply connected complex space form consists of a complex projective space $P_{n}$ C, a complex Euclidean space $C^{n}$ or a complex hyperbolic space $H_{n}$ C, according as c > 0, c = 0 or c < 0.(omitted)

  • PDF

Characterizations of some real hypersurfaces in a complex space form in terms of lie derivative

  • Ki, U-Hang;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.161-170
    • /
    • 1995
  • A complex $n(\geq 2)$-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. Takagi [12] and Berndt [2] classified all homogeneous real hypersufaces of $P_nC$ and $H_nC$.

  • PDF

Totally real submanifolds with parallel mean curvature vector in a complex space form

  • Ki, U-Hang;Kim, Byung-Hak;Kim, He-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.835-848
    • /
    • 1995
  • Let $M_n$(c) be an n-dimensional complete and simply connected Kahlerian manifold of constant holomorphic sectional curvature c, which is called a complex space form. Then according to c > 0, c = 0 or c < 0 it is a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$.

  • PDF

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.

SHAPE OPERATOR AH FOR SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • KIM, DONG-SOO;KIM, YOUNG-HO;LEE, CHUL-WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.189-201
    • /
    • 2005
  • In this article, we establish relations between the sectional curvature function K and the shape operator, and also relationship between the k-Ricci curvature and the shape operator for slant submanifolds in generalized complex space forms with arbitrary codimension.

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF