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SPACE-LIKE COMPLEX SUBMANIFOLDS OF
AN INDEFINITE COMPLEX SPACE FORM

YONG-500 Pyo

ABSTRACT. The purpose of this papet 15 to study the Cheru-type
pioblem of the complete space-like submanifolds ot an indefinite corn-
plex space form.

1. Introduction

The theory of indefinite complex submanifolds of an indefinite com-
plex space form is one of the most interesting topics in differential
geometry and it is investigated by many geometers from the various
different points of view. See [2], [3], [7] and [8] for examples

Let M be an n-dimensional space-like complex submanifold of an
(7 + p)-dimensional indefinite Kahler manifold M’ of index 2p We de-
note by H'(P’, Q") the holomorphic bisectional curvature of M’ for any
holomorphic planes P' and Q'. In particular, the holomorphic bisec-
tional curvature H'(F’, Q) for any two space-like holomorphic planes
P’ and @)’ is said to be space-like and that for any space-like holomor-
phic plane P’ and any time-like holomorphic plane @’ is said tirne-like.
We call it simply a space-like or tune-hke holomorphic bisectional cur-
vature. Then the authors in (5] proved the following
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THEOREM A. Let M be an n(2 2)-dimensional complete space-like
complez hypersurface of an (n+1)-dimensional indefinite Kahler man-
tfold M’ of index 2. If the ambient space s locally symmetric and of
it has non-negative space-like holomorphic bisectronal curvatures and
non-positive time-like holomorphic bisectional curvatures, then M s
totally geodesic.

The Chern-type problem in the space-like Kahler geometry is as
follows;

PROBLEM. Let M be an n-dimensional complete space-like complex
submanafold of an (n + p)-dunensional indefinite complex hyperbolic
space CH ;,“*'P (¢) of constant holomorphic sectional curvature ¢ of index
2p(> 0). Then does there emst a constant h i such a way that if i
satisfies hg > h, then M 1s totally geodesic?, where hy s the squared
norm of the second fundamental form « of M.

In {4], the authors recently treated this problem from the different
point of view, and they obtained partial solutions under the additional
conditions. The authors in [7] generalized also recently Theorem A in
the case where M is a space-like complex submanifold. This is, they
proved

THEOREM B. Let M be an n-dimenswonal complete space-like com-
plex submanifold of an (n+2)-dimensional indefinite locally symmetric
Kdihler manafold M’ of index 4. Assume that the normal connection
of M is proper. If M' has non-negative space-like holomorphic bi-
sectional curvatures and non-positive tune-like holomorphic bisectional
curvatures, then M s totally geodesic.

In this paper, we investigate the case where M is a space-like com-
plex submanifold of an indefinite locally symmetric Kahler manifold.
In particular, we research the Chern-type problem of complete space-
like complex submanifolds of an indefinite complex space form.

2. Space-like complex submanifolds

This section is concerned with space-like complex submanifolds of
an indefinite Kdhler manifold First of all, the basic formulas for the



SPACE-LIKE COMPLEX SUBMANIFOLDS 137

theory of space-like complex submanifolds are prepared. Let M’ be
an {n + p)-dimensional connected indefinite Kahler manifold of in-
dex 2p with the indefinite Kahler structure (¢',J’). Let M be an
n-dimensional connected space-like complex submanifold of M’ and let
g be the induced Kahler metric tensor on M from g’. We can choose
a local field {U4} = {Uy, ... , Unsp} of unitary frames on a neigh-
borhood of M’ in such a way that restricted to M, U/y, . . , U, are
tangent to M and the others are normal to M. Here and in the sequel,
the following convention on the range of indices is used throughout this
paper, unless otherwise stated :

A-B.. -=1, .. .n.n+1, ..,n-p:

i 4 oee=1. .., n. Z, Yy, - r=n—1 LD

With respect to the frame field {Ua}, let {wa} = {w,, w,} be its dual
frame field. Then-the indefinite-Kahier metric tensor ¢’ of M’ is given
by ¢ =25 ,€eaws ®0a where {e4} = {e,, €2}, ¢, =l and e, = —1.
The canonical forms w4 and the connection forms w4g of the ambient
space M’ satisfy the structure equations

dwy + ZwaAB Awp =0, wap+wap =0,
B

(2.1) deB-é-Zechc Awep = 4g,
C
7 7
QAB = ZE.CEDRABCDUJC ANwp,
<D

where (V5 (vesp. R';,.,) denotes the curvature form with respect
to the frame field {{/4} (resp the components of the indefinite Rie-
mannjan curvature tensor R’} of M’. Restricting these forms to the
submanifold M. we have

and the induced Kahler metric tensor g of M isgivenby g =25 L € ©
@, Then {l/,} is a local unitary frame field with respect to the in-
duced metric and {w,} is a local dual frame field due to {{/,}. which
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consists of complex valued 1-forms of type (1.0) on M. Moreover,
Wi, .. y Wn, @1, ... , W are linearly independent, and w, are the
canonical forms on M. It follows from (2.2) and Cartan’s lemma that
the exterior derivatives of {2.2) give rise to

(2.3) wa = Y €hTw, kY =k,
7

The quadratic form a = Zm.; ez € R w, ® w, ® U, with values in
the normal bundle NM on M in M’ is called the second fundamental
form of the submanifold M. From the structure equations for M " the
structure equations for M are similarly given by

dw, + E €wyy Awy =0,  wyy +&,, =0,
7

dwz_, + E Eplhke NWiy = Q,), Qz) = E fkfimR;)kmwk A Dy
k

k.m

(2.4)

Moreover the following relationships are obtained ;

(2 5) dwzy + Z €Wy AWy = Qa,y, Qa:y = Z CkﬁmR;zlykm%)k N Wiy

z k.on

where ()., is called the normal curveture form of M. For the Riemann-
lan curvature tensors R and R’ of M and M’, respectively. it follows
from (2.1), (2.3) and (2.4) that we have the Gauss equation

Ripm = R — D €xhTchi,.
And by means of (2.1), (2.3) and (2.5), we have

— p! , § : 2 LY
Riykﬁz = Rf‘ykrh -+ e?h'k‘_}h']m'
¥
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The components S,; of the Ricci tensor S and the scalar curvature 7
of M are given by

Z 6kRkkz) 33 !

k

2 2 z 3T — : -2
where h;® = h;.* = 3.,k es€rlihy, and by = 37, €057

In particular, let the ambient space M’ be an (n + p)-dimensional
indefinite complex space form M P(c) of constant holomorphic sec-
tional curvature ¢ and of index 2p. Then, we get

c o
R,k =',2'€3‘5k(5z36km + 8:k0ym ) — ZC:{: R
jeod

(2.6) S,; =§(n +1)e,d, —h?  r=en(n 1) - hy.

Next, we calculate the Laplacian of the squared norm hy = |a|2
of the second fundamental form o on M. The matrix A = (A4,7) of
order p defined by A, = 37, h,fghf'J is a Hermitian one. Since M
is space-like and the normal space is time-like, it is a positive semi-
definite Hermitian matrix of order p. Hence its eigenvalues A, are all

non-negative real valued functions on M and it can easily be proved
that

@7 Y h=TrA=-hy, R22TrA*=) A22Z %haz-

Since the Laplacian of the squared norm hy of the second fundamental
form on M is by definition given as

e () - (20) )
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we have
(2.8)
Dhy =2Vals +2 Y R b5 +2 S R, ok
z,3,3.k z,2,3,k
-8 z xy]kh’z!h'::] 2 Z A"’yR-iEykE
1.y.2.3.k z.y.k
—4 Z szgzhu +4 E Ri}u\ zJ — 4hy = 2TT A%
2.2,k 1,1k

where fig = 3, h,;%h ;% and the squared norm {Valg of the covariant
derivative Va of the second fundamental form « on M is defined by

[Vals = "Ex,w,k(hz,k Tk +hf;khfk) (for details, see [7]).

Lastly, we introduce here a more extended property than the gen-
eralized maximum principle due to Omori [9] and Yau [11].

THEOREM 2.1. [7] Let M be a complete Riemannian mansfold whose
Ricct curvature s bounded from below and let F be any polynonual of
one variable f with

F(fy=cof" +af" '+ - +af +ai,

where co. -+, Crr1 are constants such that ¢ > cx.1 and n > 1,
n—k > 0. If a C?-function f satisfies Af = F(}). then we have
F(sup f) S 0.

3. Some results

In this section, let M’ be an (1. + p)-dimensional indefinite Kahler
manifold of index 2p with the indefinite K&hler structure (¢’,.J') and
let M be an n(2= 3)-dimensional space-like subcomplex manifold of M’.
Assume that M’ is locally symmetric. the normal connection of M is
proper and it satisfies the following the conditions ;

(¥1) The space-like totally real bisectional curvature is bounded from
below by a;.

(#2) The time-like holomorphic bisectional curvature is bounded
from above by ay.
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Then M’ is said to satisfy the condition (x) if it satisfies the above

conditions (*1) and (x2). For a local field {F4 E%} of orthonormal
frames on a neighborhood of the manifold M’. we have

H'(P), P;) = H'(E,, Ex) = R 2 an (J # k),
H'(P,,P;) = H(E,,E) = ;ex R, S ag,

where H' (P, P} is the holomorphic bisectional curvature for the holo-
morphic plane Py = (K4, J' E 4.

REMARK 3.1. Let M’ be an (n+ p)-dimensional indefinite complex
space form M7 "F(c) of index 2p and of constant holomorphic sectional
curvature ¢. Then M’ is locally symmetric and it satisfies the condition
(*) and we may consider a¢; = ay = 5 if ¢ is non-negative and a; =
¢, ag = 5 if ¢ is non-positive

Since the ambient space M’ is locally symmetric and the squared
norm |V, of the covariant derivative Vv of the second fundamental

form « is non-positive. the equation (2.8) is estimated as follows (for
details, see [6}):

i
Ahy £ — 8(ashy — hy + ;;h.22) — 2naghs

2
+ ——{2{n— D){n+4)a; — ri}the
n—2
2
n—2

+

{4(n — V)(n + 1)a, — ro}he — 4hy — 217 A®,

where 15 = 7 R;;kfc Accordingly, since 74 2 2n(n + 1)a; and h3 2
hs. we obtain by (2.7)

(31) Ahy € Aghy? ~ Ay hg,

where the coefficients 4g and A, are constants given by

2
Ao = 5(2}? ~5), Ay =2{2(n+ 3)a; ~ (n + 4)as}.
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Now, since the totally real bisectional curvature of M is bounded from
below by a constant, by the assumption that the scalar ¢urvature of
M is bounded from above, Lemma 3.1 implies that the Ricci curvature
of M is bounded from below. Remark that the dimensional condition
n 2 3 is here used. Let f be the non-negative function defined by —hs,.
Then, by (3.1) we have

(32) Af ; COf2 +(11f+C2 :F(f)v Cp = '_AO y €1 = ‘41 » €2 :01

where [ is the polynomial of the variable f with the constant coeffi-
cients.

The first assertion of the following theorem is originally proved by
Aiyama, Kwon and Nakagawa {1]. Here we prove the the theorem in a
different way.

THEOREM 3.1. Let M’ be an (n+ p)-dimensional indefinite cornplex
space form M}V P(c) of wndex 2p and let M be an n(Z 3)-dimensional
complete space-like complez submanifold of M'. The follounng asser-
tions hold ;

(1) If ¢ 20, then M is totally geodesic.

{2) In the case ¢ < 0, there emsts a negatwe constant h so that if
hy £ h, then M 1s totally geodesic.

PROOF. Since the ambient space M’ is of constant holomorphic
sectional curvature ¢, it is locally symmetric and it satisfies the con-
dition (%) such that a; = ag = 5 Furthermore, from hsq 2 Ihg and
TrA? 2 lhg we have directly the following inequality by (2.8).

(3.3)
2
Af 2 wftteif+es=F(f), ¢ = ;;;(n+2p), ¢ =c(n+2), ¢a =0,

regardless of (3.2). On the other hand, from the norm of

2 . i
Zh ;Ek + ) (O,J()km + Otk_(s]m Yhy
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we get TrA% > ﬁhgz, where the equality holds if and only if M is
a complex space form of constant holomorphic sectional curvature §
By (2 8) we have

(3.4)

y 4
Af Zcf*+afre =F(f), «= "_"—-_i_)'(’f'a-l—?): ¢ = ¢{n+2), cg =0.

n(n +
Since S,; 2 £(n+1) by the first equation of (2.6). the Ricci curvature
of M is bounded from below.

In the first assertion, the coefficients satisfy ¢y > 0 = ¢y by (3.3) or
(3.4) and deg F' = 2, which implies that we can apply Theorem 2.1 to
the function f and hence we get

F(sup f) = sup flcosup f —¢1) £ 0.
Accordingly, we have sup f < 0 because the the function f is non-
negative and ¢; = 0. Hence f vanishes identically on M, which means
that M is totally geodesic.
In the second assertion, we have by Theorern 2 1

(35) sup f =0or SUP f é _(('_l
20

because ¢p > 0 and ¢; < 0. Hence for a negative constant h such that
h < 2 we suppose that hy < h. Then we get sup f = —h > -5
which means that sup f =0 by (3.5). Hence f vanishes identically on
M.

It completes the proof.

REMARK 3.2. For the complex coordinate system (24, 29,-1)} in
Cf"“) let M = M(b,) be the complex hypersurface in given by the
equation

Z2p -1 = Z(ZJ +b]ZJA)2? :j* =731
1

for any complex number b, such that |b,] = 1. Then it has been
shown in [3) and {10} that M is a family of complete indefinite complex
hypersurfaces of index 2s, which are Ricci flat and not flat Thus we
see ¢y = (. but it is not totally geodesic This means that in Theorem
3.1 the condition that M is space-like is essential.
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REMARK 3.3. A complex quadratic @, is a complete space-like
complex hypersurface in a complex hyperbolic space CH " '(¢) and
it is Einstein. The scalar curvature r satisfies » = cn® and hy = sn.
Then we see ¢ = £(n + 2) and ¢; =c(n + 2) in (3.3). Thus the esti-
mation of Theorem 3.1(2) shows that according to (3.3) for a negative
constant h < & = Fn, if hy S h. then M is totally geodesic.

REMARK 3.4. A complex hyperbolic space CH"(5) is a complete
space-like complex submanifold in CH?**?(c) and it is not totally geo-
desic. The scalar curvature r satisfies r = Sn(n+1) and hy = $n(n+1).
Then we see ¢y = n—(fer)(n+2) and ¢ = ¢(n+2) in (3.4). Hence the es-
timation of Theorem 3.1(2) shows that according to (3.4) for a negative
constant o < 2 = fn(n + 1).if he £ A, then M is totally geodesic.
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