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ON REAL HYPERSURFACES OF TYPE
A IN A COMPLEX SPACE FORM (II)

YONG-Soo Pyo

§1. Introduction

A complex n-dimensional Kahler manifold of constant holomorphic
sectional curvature c is called a complez space form, which is denoted by
M., (c). A complete and simply connected complex space form consists
of a complex projective space P,C, a complex Euclidean space C” or a
complex hyperbolic space H,C, according as ¢ > 0,c =0 or ¢ < 0.

In his study of real hypersurfaces of P,C, Takagi [12] classified all ho-
mogeneous real hypersurfaces and Cecil and Ryan [3] showed also that
they are realized as the tubes of constant radius over Kahler submani-
folds if the structure vector field is principal. Real hypersurfaces of H,,C
have also investigated by Berndt [2], Montiel [9], Montiel and Romero
[10] and so on, and Berndt [2] classified all homogeneous real hypersur-
faces of H,C and showed that they are realized as the tubes of constant
radius over certain submanifolds. According to Takagi’s classification
theorem and Berndt’s one, the principal curvatures and their multiplic-
ities of homogeneous real hypersurfaces of M, (c) are given.

Now, let M be a real hypersurface of M,(c),c # 0. Then M has
an almost contact metric structure (¢,&,7,¢) induced from the Kahler
metric and the almost complex structure of M,(c). We denote by A
the shape operator in the direction of the unit normal and by V the
Riemannian connection on M. Then Okumura [11] and Montiel and
Romero [10] proved the following

THEOREM A. Let M be a real hypersurface of P,C,n 2 2. If it
satisfies

(1.1) Ap— ¢pA =0,
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then M is locally a tube of radius r over one of the following Kéhler
submanifolds:

(A1) a hyperplane P,_,C, where 0 <r < 7/2,
(A2) a totally geodesic PrC (1 £ k < n—2), where 0 <r < m/2.

THEOREM B. Let M be a real hypersurface of H,C,n 2 2. If it
satisfies (1.1), then M is locally one of the following hypersurfaces:

(Ao) a horosphere in H,,C, i.e., a Montiel tube,
(A1) a tube of a totally geodesic hyperplane H,,_,C,
(A2) a tube of a totally geodesic HxC (1 S k S n —2).

Such real hypersurfaces in. Theorems A and B are said to be of type
A. On the other hand, Ki, Kim and Lee [4] gave the following

THEOREM C. Let M be a real hypersurface of My(c),c # 0,n 2 2.
If it satisfies

(12) VeA =0, g(A¢,8) #0,
then M is of type A.

Let Ty be a distribution defined by the subspace Ty(z) = {v € T, M :
g(u,€&(x)) = 0} of the tangent space T, M of M at any point z, which is
called the holomorphic distribution. As an example of non-homogeneous
real hypersurfaces in M,(c), ¢ # 0, we have ruled real ones. It is also seen
in Kimura [6] and Ahn, Lee and Suh [1] that ruled real hypersurfaces are
characterized by the holomorphic distribution Ty. On the other hand, for
the Hopf fibration 7 : $2**!(1) — P, C, the projection of a hypersurface
with parallel second fundamental form in $2"*1(1) becomes a real one
in P,C, which satisfies VA = 0. Thus it seems to be interesting the
property for V¢ A restricted to Tp.

The purpose of this article is to prove the following generalized prop-
erties of Theorem C.

THEOREM 1. Let M be a real hypersurface of P,C,n 2 3. If V . A(X)
= 0 for any vector field X in Ty, then M is locally congruent to one of
the following:

(a) a non-homogeneous real hypersurface which lies on a tube of
radius 7 /4 over a certain Kahler submanifold in P,C,
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(b) a real hypersurface of type A.

THEOREM 2. Let M be a real hypersurface of M,,(c),c #0,n 2 3. If
it satisfies

(13) VeA(X) =0, g(AL€)#0

for any vector field X in Ty, then M is of type A.

The author would like to thank Professor Hisao Nakagawa for his
valuable suggestions and encouragement during the preparation of this

paper.

§2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces
of a complex space form. Let M be a real hypersurface of a complex
n-dimensional complex space form M,(c) of constant holomorphic sec-
tional curvature ¢, and let C' be a unit normal vector field on a neigh-
borhood in M. We denote by J the almost complex structure of My(c).
For a local vector field X on the neighborhood in M, the images of X
and C under the linear transformation J can be represented as

JX = ¢X +n(X)C, JC = -¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle
TM of M, while n and ¢ denote a 1-form and a vector field on the
neighborhood in M, respectively. Then it is seen that g(¢,X) = n(X),
where g denotes the Riemannian metric tensor on M induced from the
metric tensor on M,(c). The set of tensors (¢, £, 7, g) is called an almost
contact metric structure on M. They satisfy the following properties:

¢*=—-I+n®¢ ¢E=0, n¢) =1,

where I denotes the identity transformation. Furthermore, the covariant
derivatives of the structure tensors are given by

(21)  Vxé=¢AX, Vxg(Y)=n(Y)AX — g(AX,Y)E
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for any vector fields X and Y on M, where V is the Riemannian con-
nection on M and A is the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature
¢, the equations of Gauss and Codazzi are respectively obtained: -

R(X,Y)Z = z{g(Y, 2)X — ¢(X, 2)Y

(2.2) + 9(8Y, 2)¢X — g(¢X, Z)pY —29(¢X,Y)9Z}
+g(AY, Z2)AX — g(AX, Z)AY,

(23) VxA(Y) - VyA(X) = {n(X)$Y —n(Y)$X - 29(¢X,Y)E},
where R denotes the Riemannian curvature tensor of M.

§3. Proof of Theorems
Let M be a real hypersurface of Mp(c),c # 0,n 2 3 and assume that

(3.1) VeA(X) =0, X €T,
By the assistance of (2.3), it turns out to be
(3.2) VyA()=-34Y, Y €T

Differentiating this equation with respect to X covariantly and taking
account of (2.1), we get

VxVy A(E) + Vory A(€) + Vy A(AX) = L{g(AX,Y ) — $Vx Y}

for any vector fields X and Y in Tj. Since the component of the vector
VxY in the direction of ¢ is given by —g(¢AX,Y’) by the first equation
of (2.1), we have the following orthogonal decomposition
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where (VxY)y denotes the To-component of VxY. By (2.3), (3.1) and
the covariant differentiation which is given above and the orthogonal
decomposition, we get

c
(3.3) VxVyA(f) = 9(¢AX,Y)VeA() - Vy A($AX) + 7 9(AX, Y)E
for any vector fields X and Y in Tj. As is well known, the Ricci formula
for the shape operator A is given by
VxVyA(Z)—-VyVxA(Z)=R(X,Y)AZ) - A(R(X,Y)Z)

for any vector fields X, Y and Z. Accordingly, by putting Z = ¢ and
taking X and Y in the distribution Ty, we obtain by the Gauss equation
(2.2) and (3.3) yield

9(Ad + $A)X,Y)VCA(E) + VX A($AY) - Vy A($AX)
= 7{9(¥, 40X — g(X, AQ)Y

(3.4) + 9($Y, AE)BX — g(X, AL)BY — 29(6X,Y )AL}
—g(Y, A A’X + g(X, A A’Y + g(Y, A€)AX
— (X, A%)AY.

Now, we consider first the case where the structure vector field £ is
principal. Then it is easily seen that V¢4 = 0 holds under the assump-
tion (3.1). So, suppose that the structure vector field ¢ is not principal.
Then we can put A6 = af + BU, where U is a unit vector field in the
holomorphic distribution Ty, and a and 3 are smooth functions on M.
We may consider that the function # does not vanish identically on M.
Let M, be the non-empty open subset of M consisting of points z at
which (z) # 0. Hereafter unless otherwise stated, we shall discuss on
the subset My of M. For the object, we shall express (3.4) with the
simpler form. By the form A{ = af + BU, the equation (3.4) can be
reformed as

g(Ap+9A)X, Y )V A(E) + Vx A(GAY ) — Vy A($AX)
= 7LV, D)X — g(X,U)Y — g(Y, $U)$X +g(X, pU)¢Y

(3.5) —2g($X,Y)$U} + Bl—g(Y, U)A*X + ¢(X,U)A%Y
+{ag(Y,U) +g(Y, AU)}AX
—{eg(X,U) + ¢(X, AU)}AY]
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for any vector fields X and Y in Tj. Differentiating A{ = af + BU with
respect to ¢ covariantly, we have by (2.1)

(3.6) VeA(£) = da(§)§ + dB(E)U + afoU — fASU + VU

Since it is easily seen by (2.1) and by the choice of the vector field U
that the vectors A¢U and VU are both orthogonal to £, we see

9(VeA(£),€) = da(§),

i.e., we have

3.7) VeA(§) = da(£)¢,

because V¢ A(€) is orthogonal to T by (3.1). On the other hand, taking
X and Y in the distribution T, we have

(38) 9(VxA($AY),€) = —79(4X.Y),

where we have used (3.2). By taking account of (3.7) and (3.8), the inner
product of (3.5) and ¢ gives us

(3.9) da(£)9((Ad+4A4)X,Y)
= 2/32{9()(: U)g(Y’ AU) - g(Y’ U)g(X’ AU)}

for any vector fields X and Y in Tg. Hence we get by the above equation

da(€)(Ad + A)X =26*{g(X,U)AU — g(AX, UV}

(3.10) )
— B{26%9(X,U) + da(é)g(X, U)}¢
for any vector filed X in Tj.

Now, we can consider that there is a vector field V' in the holomor-
phic distribution Ty in such a way that AU is expressed as a linear
combination of the vector fields &, U and V, where U and V are or-
thonormal. Namely, since the shape operator A is symmetric, we may
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put AU = B¢ + yU + 8V, where v and 6 are smooth functions on Mj.
Putting X = U in (3.10) and using the expression of AU, we get

(3.11) da(E)AQU = 2826V — yda(€)$U — Sda(€)eV.

Consequently, acting the linear transformation ¢ to the above equation,
we have

(3.12) da(€)p AU = yda(€)U + 6da(€)V + 28264V.

Putting X = ¢U in (3.10) again and making use of the decomposition
of AU, we get

da(§)$ AU = {yda(€) — 26%6g(¢U, V)}U + 6da(€)V,
from which together with (3.12), it follows that we have

B26{V +g(¢U,V)U} = 0.

Let M be the open subset of Mj consisting of points z at which §(z) # 0.
Suppose that M; is not empty. On M7, we have V = +¢U by the above
equation, because U and ¢V are both unit. Without loss of generality,
we may suppose that V = ¢U. Thus we have

(3.13) do(£)AQU = §da(E)U + {2676 — yda()}¢U

on M;. On the other hand, by (3.11), we have da(§)A¢U = —yda(€)pU
on My — M;. Consequently, (3.13) holds on Mj.

Next, we investigate the mutual relations among the functions a, £,y
and 6. First we differentiate AU with respect to £ covariantly. Then,
taking account of (2.1) and (3.1), we get

AVU = {dB(¢) - B} + dv(EHU
+{B% + db6(€)}pU + VU +64VU

on M;. Furthermore, this equation holds on My. By the forms A¢ =
al + U and AU = BE + U + 69U, it is easily seen that the following

equations

(3.14)

g(AVU,£) =0,
g(AVU,U) = 69(VeU, ¢U),
da(£)g(AVeU, U ) = {2626 — vda(€)}g(VeU, ¢U)
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are obtained, where we have used (3.13) to derive the last equation. Then
we consider the inner product of (3.14) and §, U and ¢U respectively.
Taking account of the above three equations, we have the following mu-
tual relations:

(3.15) dp(£) = B.
(3.16) dv(€) = 269(VeU, oU),

(3.17)  2{B%6 —vda(€)}9(VeU, $U) = da(€){B” + db(€)}.

On the other hand, we take here the inner product of (3.6) and ¢U.
Then the inner product of the left hand side vanishes identically by (3.1)
and therefore it implies

(3.18) da(€)g(VeU, $U) = 2676 — (o + 7)de(§),

where we have used (3.13). Also, by taking account of (3.10) and the
form AU, it is easily seen that we have

da(§)(Ad + A)X

G190 __ Bda(e)g(X, 61)E — 26%59(X, SUIU + 25%69(X, U)6U
for any vector field X in Tg.

Now, let L(&,U, ¢U) be a distribution defined by the subspace L, (¢, U,
#U) in the tangent space T; M spanned by the vectors ¢(z), U(z) and
¢U(z) at any point = in My. Then the subspace L (¢,U, ¢U) is A-
invariant by (3.13) and also ¢-invariant. Let T} be the orthogonal com-
plement in the tangent bundle T'M of the distribution L(&, U, ¢U). Since
the distribution L(§,U, #U) is A-invariant, the orthogonal distribution
T, is also A-invariant and moreover it is ¢-invariant, too. Let M> be the
subset of My consisting of points z at which da(§)(z) # 0. If the subset
M, is empty, then we can derive that V¢A = 0 from the assumption
(3.1) and (3.7). So, suppose that M, is not empty. Hereafter unless
otherwise stated, our discussion will be continued on M;. Accordingly,
by (3.19), we have

(A + ¢A)X =0, X €T
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By differentiating this equation with respect to £ covariantly and com-
bining with (2.1) and (3.1), it implies that

(Ap+ pA)WV X =0, X €T,
because T is A-invariant and ¢-invariant. The inner product of this
equation and  yields ¢(V U, ¢X) = 0 by (2.1). Since T} is ¢-invariant,

we get
g(vavX) =0, X eT.

Evidently, we get

9(VeU,€) =0, ¢g(VeU,U) =0,
from which it follows that we can express VU as
(3.20) VeU = e¢U,

where ¢ is a smooth function on Mj. Accordingly the equations (3.16)
~ (3.18) can be rewritten as follows:

(3.16") dv(€) = 24e,
(3.17) da(){B* + 2y + dB(E)} = 265,
(3.18") do(é)(a+v+¢) = 26%.

By (3.17") and (3.18'), we see

(3.21) dé(€) = e(la—v+¢) ~ B2
And, from (3.13) and (3.18"), we get also

(3.22) AU = 6U + (a + €)9U.

On the other hand, differentiating the function g(A¢U, ¢U) = a+¢ with
respect to { exteriorly and using (2.1), (3.1) and (3.20), we have

d(a +€)(€) = ~26e,
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which, by (3.16'), implies
(3.23) dla+vy+¢)(¢)=0.

Now, since T} is A-invariant, there is a principal vector field X, in T}
with principal curvature Ag, where X is unit. Then it turns out to
be A¢Xy = —Ao#Xo. Differentiating AXy = A\oXp with respect to £

covariantly, we have
AVfXO = dAo(f)X() + )\OVEXO

by (3.1), which implies by the inner product of this equation with X
that

(3.24) dho(€) = 0.

On the other hand, differentiating A6 = af + BU with respect to X
covariantly and applying (2.1) and (3.2), we have

BV x,U = —da(Xo )€ ~ dB(Xo)U — (Ag +ak + 2) $Xo.

Since the vector field Vx,U is orthogonal to £ and U, it implies

(3.25) { da(Xo) =0, dB(Xo) =0,

BV x,U = — (A% + ado + £) ¢ Xo.

Furthermore, differentiating AU = 8¢ + vU + 64U with respect to X
covariantly and making use of (2.1) and (3.25), we have

BY x, A(U) =Bdy(Xo)U + BdS(Xo)dU + 6 (Ag +ade + %) X,
+ {/\0/32 —(Aa+7) (/\g +ako + %)} $Xo.
Thus we get

Ba(Vx,AU), Xo) =8 (N2 + ado + £),

(3.26) { Ba(Vxa AU), 6X0) = A% — (Ao +7) (A2 +ado + £)
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Similarly, by (3.22), we get

BI(Vx, A(SU), Xo) = (—do +a+€) (AF + ado + §),
Bg(Vx, A($U), $Xo) = =8 (M2 + ado + £).

And, we shall consider the equation (3.5) for the unit vector field Xj.
Putting ¥ = U in it, we have

(3.27) {

Vi, A(SAU) ~ VyA(pAXo) = B { =X + (@ + 7)o + 7} Xo.

Taking account of (2.3), (3.26) and (3.27) and by the direct calculation,
we see that any principal curvature of the shape operator A|T restricted
to Ty satisfies the following quadratic equation:

y* +ay’ + {'Y(a+€) -6+ -;f}yz
+{av(a+e)—as® — Fatq)}y
- {8 +6 = r(a+0))

= 0.

(3.28)

Next, suppose that there are a principal curvature A of A|T; and a point
¢ in My at which A(z) = 0. For the principal curvature A, let My be the
subset of M, consisting of points « at which A(z) = 0. Then, by (3.28),
we have

(3.29) B +6 —vyla+e)=0
on M. Suppose first that AX = 0 for any vector field X in Ty on the

interior Int My of M. Since the vector field VxY for any vector fields
X and Y in T is expressed as

BVXY = B(VxY )i + £ {g(4X,Y)U - g(X,Y)¢U)
by (2.1) and (3.25), we have

BAVXY = Z{g(¢X,Y)AU — g(X,Y)A4U}
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on Int M), where (VxY); denotes the T1-component of VxY . Exchang-
ing X and Y in the above equation and substituting the second one from
the first one, we have

96X, Y)U +64U) =0, X,Y €Ty

on Int M. Hence v = § = 0, a contradiction by (3.29). So, there is a
principal curvature p of A|T; such that u(z) # 0 at z in Int M,. By
(3.28) and (3.29), the principal curvature is a root of the cubic equation

3 2, (a2 1 8\, _ 20 —
y° + ay +kﬂ +4)y By = 0.

Since p and —p are non-zero roots, we have

2 2, S\ _ 2 _ g24 —
y+(ﬂ+4)—0, ay” — %y =0.
Accordingly, we get

B*a+v)+ za =0.

By using (3.15), (3.16'), (3.18') and (3.23), the twice exterior differentia-
tion of this equation with respect to £ gives us to 326 = 0, a contradiction
by (3.18") and (3.29). Thus we see that the interior of the subset M)
is empty, which means that any principal curvature of 4|7} has no zero
points almost everywhere in M. On M, — M, the principal curvature
A is a solution of the equation (3.28). Since —A(# 0) is also principal
curvature, it yields

(3.30) aX? + {ay(a +€) — ad® — f*(a+7)} = 0.

Differentiating this equation with respect to £ covariantly and taking
account of (3.15), (3.16'), (3.21), (3.23), (3.24) and (3.30), we have

yda(€) — 2aé(y +¢) =0,
from which it follows that again by (3.18")

(3.31) §{F*y —a(y+e)(a+v+e)} =0
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on My — M)y. Here we consider the subset My — M; which consists of
points z at which A(z) # 0, da(é)(z) # 0 and é(z) = 0. Suppose that
the interior of the subset M, — M; is not empty. Then, by (3.15), (3.16'),
(3.17") and (3.18'), we have

dp(£) =0, dy(£) =0,
B2+29 =0, a+v+e =0

on the interior of M, — M;. By these equations, we get yda(¢) = 0.
Hence we obtain 8 = 0, a contradiction. This means that the interior of
M, — My must be empty. Consequently, any point z almost everywhere
in M, satisfies §(z) # 0. Thus, by continuity, we have by (3.31)

By —aly+e)a+y+e)=0

on My — M. Again, differentiating this equation with respect to ¢
covariantly and taking account of (3.15), (3.16'), (3.18') and (3.23), we
have a = 0. Hence we get

da(€) = 0

on M, — M), namely, by continuity, on M,. This means that M, is
empty. Consequently, we have the following proposition. This shows
that Theorems 1 and 2 are verified by a theorem due to Kimura and
Maeda [7] and Theorem C, respectively.

PROPOSITION 3.1. Let M be a real hypersurface of M,(c),c #0,n 2
3. If it satisfies
VeAX) =0, X €Ty,

then Ve A = 0.

As a direct consequence of Theorem 2, we find the following corollar-
ies.

COROLLARY 3.2. Let M be a real hypersurface of My(c),c # 0,n 2
3. If the structure vector field ¢ is principal and if it satisfies

9(VeA(X),Y) =0, g(AL,£) #0
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for any vector fields X and Y in Tp, then M is of type A.

Proof. By the assumption, we see A{ = af and then « is constant.(See
(5] and [8].) Accordingly we have

Ve A(€) + AVt = aVet,

which implies V¢ A(£) = 0, where we have used that V£ = 0. Hence, by
the assumption, we get V¢ A(X) = 0 for any vector field X in T,. This
completes the proof.

Now, let L; be the Lie derivative with respect to £. We define the
second fundamental form h by h(X,Y) = g(AX,Y) for any vector fields
X andY.

COROLLARY 3.3. Let M be a real hypersurface of Myp(c),c # 0,n 2
3. If it satisfies

Leh(X,Y) =0, g(A¢,£)#0
for any vector field X in Ty and any vector field Y, then M is of type A.

Proof. Because of
Leh(X,Y) =g(VeAX),Y)
for any vector fields X and Y, the proof completes.
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