• Title/Summary/Keyword: complex manifold

검색결과 136건 처리시간 0.021초

COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES

  • Han, Chong-Kyu;Tomassini, Giuseppe
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1001-1015
    • /
    • 2010
  • Let M be a $C^{\infty}$ real hypersurface in $\mathbb{C}^{n+1}$, $n\;{\geq}\;1$, locally given as the zero locus of a $C^{\infty}$ real valued function r that is defined on a neighborhood of the reference point $P\;{\in}\;M$. For each k = 1,..., n we present a necessary and sufficient condition for there to exist a complex manifold of dimension k through P that is contained in M, assuming the Levi form has rank n - k at P. The problem is to find an integral manifold of the real 1-form $i{\partial}r$ on M whose tangent bundle is invariant under the complex structure tensor J. We present generalized versions of the Frobenius theorem and make use of them to prove the existence of complex submanifolds.

DIAGONAL LIFTS OF TENSOR FIELDS OF TYPE (1,1) ON CROSS-SECTIONS IN TENSOR BUNDLES AND ITS APPLICATIONS

  • Gezer, Aydin;Salimov, Arif
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.367-376
    • /
    • 2008
  • The main purpose of this paper is to investigate diagonal lift of tensor fields of type (1,1) from manifold to its tensor bundle of type (p, q) and to prove that when a manifold $M_n$ admits a $K\ddot{a}hlerian$ structure ($\varphi$,g), its tensor bundle of type (p,q) admits an complex structure.

REMARKS ON A THEOREM OF CUPIT-FOUTOU AND ZAFFRAN

  • Kim, Jin Hong
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.591-602
    • /
    • 2020
  • There is a well-known class of compact, complex, non-Kählerian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular holomorphic foliation 𝓕. Moreover, later Meersseman showed that if an LVMB manifold is actually an LVM manifold, then the regular holomorphic foliation 𝓕 is actually transverse Kähler. The aim of this paper is to deal with a converse question and to give a simple and new proof of a well-known result of Cupit-Foutou and Zaffran. That is, we show that, when the holomorphic foliation 𝓕 on an LVMB manifold N is transverse Kähler with respect to a basic and transverse Kähler form and the leaf space N/𝓕 is an orbifold, N/𝓕 is projective, and thus N is actually an LVM manifold.