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REAL HALF LIGHTLIKE SUBMANIFOLDS OF AN

INDEFINITE KAEHLER MANIFOLD

Dae Ho Jin

Abstract. In this paper, we study the geometry of real half lightlike
submanifolds of an indefinite Kaehler manifold M̄ . We provide several
new results on such a real half lightlike submanifold M by using the

F -structure of M induced by the almost complex structure J of M̄ .

1. Introduction and preliminaries

It is well known that the radical distribution Rad(TM) = TM ∩ TM⊥ of
half lightlike submanifolds M of a semi-Rimannian manifold (M̄, ḡ) of codi-
mension 2 is a vector subbundle of the tangent bundle TM and the normal
bundle TM⊥, of rank 1. Thus there exists complementary non-degenerate dis-
tributions S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥ respectively,
which called the screen and coscreen distribution on M , such that

(1.1) TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such
a half lightlike submanifold by M = (M, g, S(TM)). Denote by F (M) the
algebra of smooth functions on M and by Γ(E) the F (M) module of smooth
sections of any vector bundle E over M . Choose L ∈ Γ(S(TM⊥)) as a unit
vector field with ḡ(L,L) = ϵ = ±1. Consider the orthogonal complemen-
tary distribution S(TM)⊥ to S(TM) in TM̄ . Certainly ξ and L belong to
Γ(S(TM)⊥). Hence we have the following orthogonal decomposition

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥.
For any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M ,
there exists a uniquely defined null vector field N ∈ Γ(ltr(TM)) [1] satisfying

(1.2) ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).
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We call N, ltr(TM) and tr(TM) = S(TM⊥)⊕orth ltr(TM) the lightlike trans-
versal vector field, lightlike transversal vector bundle and transversal vector
bundle of M with respect to S(TM) respectively. Thus TM̄ is decomposed as
follows:

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(1.3)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

The objective of this paper is to study the geometry of real half lightlike
submanifolds of an indefinite Kaehler manifold M̄ or an indefinite complex
space form M̄(c). We provide several new results on such a real half lightlike
submanifold M by using the F -structure of M induced by the almost complex
structure J of M̄ . In Section 1, we recall some of fundamental formulas in
the theory of half lightlike submanifolds. In Section 2, we prove some basic
theorems of half lightlike submanifolds which will be used in the sequel. In
Section 3, we study real half lightlike submanifolds M of an indefinite Kaehler
manifold M̄ by using the induced F -structure and some umbilical properties
of M . In Section 4, we investigate real half lightlike submanifolds M of an
indefinite complex space form M̄(c) such that the screen distribution S(TM)
is totally umbilical in M . Recall the following structure equations:

Let ∇̄ be the Levi-Civita connection of M̄ and P the projection morphism
of Γ(TM) on Γ(S(TM)) with respect to the decomposition (1.1). The local
Gauss and Weingarten formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L,(1.4)

∇̄XN = −ANX + τ(X)N + ρ(X)L,(1.5)

∇̄XL = −ALX + ϕ(X)N,(1.6)

∇XPY = ∇∗
XPY + C(X,PY )ξ,(1.7)

∇Xξ = −A∗
ξX − τ(X)ξ,(1.8)

for all X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on
TM and S(TM) respectively, B and D are called the local second fundamental
forms of M , C is called the local second fundamental form on S(TM). AN , A∗

ξ

and AL are linear operators on TM and τ, ρ and ϕ are 1-forms on TM . We
say that h(X,Y ) = B(X,Y )N +D(X,Y )L is the second fundamental tensor of
M . Since ∇̄ is torsion-free, ∇ is also torsion-free, and B and D are symmetric.
From the facts B(X,Y ) = ḡ(∇̄XY, ξ) and D(X,Y ) = ϵḡ(∇̄XY, L), we know
that B and D are independent of the choice of S(TM) and satisfy

(1.9) B(X, ξ) = 0, D(X, ξ) = −ϵϕ(X), ∀X ∈ Γ(TM).

The induced connection ∇ of M is not metric and satisfies

(1.10) (∇Xg)(Y, Z) = B(X,Y ) η(Z) +B(X,Z) η(Y ),

for all X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

(1.11) η(X) = ḡ(X,N), ∀X ∈ Γ(TM).
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But the connection ∇∗ on S(TM) is metric. The above three local second
fundamental forms are related to their shape operators by

B(X,Y ) = g(A∗
ξX,Y ), ḡ(A∗

ξX,N) = 0,(1.12)

C(X,PY ) = g(ANX,PY ), ḡ(ANX,N) = 0,(1.13)

ϵD(X,PY ) = g(ALX,PY ), ḡ(ALX,N) = ϵρ(X),(1.14)

ϵD(X,Y ) = g(ALX,Y )− ϕ(X)η(Y ), ∀X, Y ∈ Γ(TM).(1.15)

By (1.12) and (1.13), we show that A∗
ξ and AN are Γ(S(TM))-valued shape

operators related to B and C respectively and A∗
ξ is self-adjoint on TM and

(1.16) A∗
ξξ = 0.

But AN is not self-adjoint on S(TM). We know that AN is self-adjoint in
S(TM) if and only if S(TM) is an integrable distribution [1]. From (1.15), we
show that AL is not self-adjoint on TM . AL is self-adjoint in TM if and only
if ϕ(X) = 0 for all X ∈ Γ(S(TM)) [4]. From (1.4), (1.8) and (1.9), we have

(1.17) ∇̄Xξ = −A∗
ξX − τ(X)ξ − ϵϕ(X)L, ∀X ∈ Γ(TM).

Definition 1. A half lightlike submanifold M of a semi-Riemannian manifold
(M̄, ḡ) is said to be irrotational [8] if ∇̄Xξ ∈ Γ(TM) for any X ∈ Γ(TM).

Note 1. From (1.17) we show that the above definition is equivalent to the
condition ϕ(X) = 0, i.e., D(X, ξ) = 0 for all X ∈ Γ(TM) due to (1.9).

Denote by R̄ and R the curvature tensors of the connections ∇̄ and ∇ re-
spectively. Using the local Gauss-Weingarten formulas (1.4) ∼ (1.6) for M , we
have the Gauss-Codazzi equations for M , for all X, Y, Z ∈ Γ(TM):

R̄(X,Y )Z = R(X,Y )Z(1.18)

+ B(X,Z)ANY −B(Y, Z)ANX +D(X,Z)ALY −D(Y, Z)ALX

+ {(∇XB)(Y, Z)− (∇Y B)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)

+ ϕ(X)D(Y,Z)− ϕ(Y )D(X,Z)}N
+ {(∇XD)(Y, Z)− (∇Y D)(X,Z) + ρ(X)B(Y, Z)− ρ(Y )B(X,Z)}L,

R̄(X,Y )N = −∇X(ANY ) +∇Y (ANX) +AN [X,Y ](1.19)

+ τ(X)ANY − τ(Y )ANX + ρ(X)ALY − ρ(Y )ALX

+ {B(Y,ANX)−B(X,ANY ) + 2dτ(X,Y ) + ϕ(X)ρ(Y )− ϕ(Y )ρ(X)}N
+ {D(Y,ANX)−D(X,ANY ) + 2dρ(X,Y ) + ρ(X)τ(Y )− ρ(Y )τ(X)}L,

R̄(X,Y )L = −∇X(ALY ) +∇Y (ALX) +AL[X,Y ](1.20)

+ ϕ(X)ALY − ϕ(Y )ALX

+ {B(Y,ALX)−B(X,ALY ) + 2dϕ(X,Y ) + τ(X)ϕ(Y )− τ(Y )ϕ(X)}N
+ {D(Y,ALX)−D(X,ALY ) + ρ(X)ϕ(Y )− ρ(Y )ϕ(X)}L.
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2. Some results of half lightlike submanifolds

Proposition 2.1. Let M be a half lightlike submanifold of a semi-Riemannian
manifold (M̄, ḡ). For all X, Y, Z ∈ Γ(TM), we have the following equation:

(2.1) (∇XB)(Y,Z)− (∇Y B)(X,Z) = τ(Y )B(X,Z)− τ(X)B(Y,Z).

Proof. Replace Z by ξ in (1.18) and use (1.8) and (1.9), we have

R̄(X,Y )ξ = R(X,Y )ξ + ϵϕ(Y )ALX − ϵϕ(X)ALY(2.2)

+ ϵ{B(X,ALY )−B(Y,ALX)− 2dϕ(X,Y ) + ϕ(X)τ(Y )− ϕ(Y )τ(X)}L.

Taking the scalar product with Z ∈ Γ(TM) to (2.2) and using (1.15) and the
facts ḡ(R̄(X,Y )Z, ξ) = −ḡ(R̄(X,Y )ξ, Z) and R(X,Y )Z ∈ Γ(TM), we get

(2.3) ḡ(R̄(X,Y )Z, ξ) = ϕ(X)D(Y, Z)− ϕ(Y )D(X,Z), ∀X,Y, Z ∈ Γ(TM).

Taking the scalar product with ξ to (1.18) and using (2.3), we have (2.1). □

Definition 2. We say that M is lightlike transversal umbilical if, on any coor-
dinate neighborhood U , there is a smooth function β such that

(2.4) B(X,Y ) = β g(X,Y ), ∀X, Y ∈ Γ(TM).

In case β = 0 on U , we say that M is lightlike transversal geodesic.

Theorem 2.2. Let M be a lightlike transversal umbilical half lightlike subman-
ifold of a semi-Riemannian manifold (M̄, ḡ). Then the function β defined by
(2.4) satisfies the partial differential equation

(2.5) ξ(β) + βτ(ξ)− β2 = 0.

Moreover, if rank (S(TM)) > 1, then β satisfies the partial differential equation

PX(β) + βτ(PX) = 0, ∀X ∈ Γ(TM).

Proof. From (1.10), (2.1) and (2.4), for all X, Y, Z ∈ Γ(TM), we have

{X(β) + βτ(X)− β2η(X)}g(Y,Z) = {Y (β) + βτ(Y )− β2η(Y )}g(X,Z).

Take X = ξ and Z = Y such that g(Y, Y ) ̸= 0 in this equation, we have (2.5).
Take X = PX, Y = PY and Z = PZ in the last equation and by using

(1.11) and the fact that S(TM) is non-degenerate, we get

{PX(β) + βτ(PX)}PY = {PY (β) + βτ(PY )}PX.

Now suppose there exist a vector field Xo ∈ Γ(TM) such that PXo(β) +
βτ(PXo) ̸= 0 at a point x ∈ M . Then from the last equation it follows
that all vectors from the fibre S(TM)x are colinear with (PXo)x. This is a
contradiction as dim (S(TM)x) > 1. Thus we have PX(β) + βτ(PX) = 0 for
all X ∈ Γ(TM). Thus we have our assertions. □
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Definition 3. A vector field X on M is said to be a conformal Killing [5] if
there exists a non-vanishing smooth function β on M such that LXg = −2βg,
where LX denotes the Lie derivative with respect to the vector field X. In
particular, if β = 0, then X is called a Killing vector field. A distribution D
on M is said to be a conformal Killing (Killing) if each vector field belonging
to D is a conformal Killing (Killing) vector field.

Theorem 2.3. Let M be a half lightlike submanifold of a semi-Riemannian
manifold (M̄, ḡ). Then the radical distribution Rad(TM) of M is a conformal
Killing distribution if and only if M is lightlike transversal umbilical.

Proof. By straightforward calculations and use (1.8) and (1.12), we have

(Lξg)(X,Y ) = ḡ(∇Xξ, Y ) + g(X,∇Y ξ),

g(∇Xξ, Y ) = −g(A∗
ξX,Y ) = −B(X,Y ).

Thus we have Lξg(X,Y ) = − 2B(X,Y ) for any X, Y ∈ Γ(TM). Thus we show
that Lξg = −2βg ⇐⇒ B = βg. Therefore we get our assertion. □

As the Riemannian curvature tensor R of M can be considered as an F (M)-
multilinear function on individual vector fields. The operator

R
XY

: Γ(TM) → Γ(TM), X, Y ∈ Γ(TM),

sending each Z to R(X,Y )Z, is called a curvature operator.

Theorem 2.4. Let M be a half lightlike submanifold of a semi-Riemannian
manifold (M̄, ḡ). Then the radical vector bundle Rad(TM) is an invariant
distribution with respect to the curvature operator RXY , for all X, Y ∈ Γ(TM).

Proof. Using the local Gauss-Weingarten formulas for S(TM), we obtain

R(X,Y )ξ = −∇∗
X(A∗

ξY ) +∇∗
Y (A

∗
ξX) +A∗

ξ [X,Y ]− τ(X)A∗
ξY(2.6)

+ τ(Y )A∗
ξX + {C(Y,A∗

ξX)− C(X,A∗
ξY )− 2dτ(X,Y )}ξ.

Taking the scalar product with any Z ∈ Γ(TM) to (2.6) and using the facts
that S(TM) is non-degenerate and g(R(X,Y )Z, ξ) = 0, we have

(2.7) ∇∗
X(A∗

ξY )−∇∗
Y (A

∗
ξX)−A∗

ξ [X,Y ] + τ(X)A∗
ξY − τ(Y )A∗

ξX = 0

for all X, Y ∈ Γ(TM). Thus the equation (2.6) reduces to

(2.8) R(X,Y )ξ = {C(Y,A∗
ξX)− C(X,A∗

ξY )− 2dτ(X,Y )}ξ. □

Proposition 2.5. Let M be a half lightlike submanifold of a semi-Riemannian
manifold (M̄, ḡ). Then the local second fundamental form D and C of M and
S(TM) respectively satisfy the following equation, for all X, Y, Z ∈ Γ(TM) :

(2.9) ϵ{ϕ(X)D(Y, Z)− ϕ(Y )D(X,Z)} = ϕ(X)C(Y, PZ)− ϕ(Y )C(X,PZ).
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Proof. Taking the scalar product with any L to (1.18), we have

ḡ(R̄(X,Y )Z, L) = ϵ{(∇XD)(Y, Z)− (∇Y D)(X,Z)

+ ρ(X)B(Y, Z)− ρ(Y )B(X,Z)}.

Also, taking the scalar product with any Z ∈ Γ(TM) to (1.20), we have

ḡ(R̄(X,Y )Z, L) = ϵ{(∇XD)(Y,Z)− (∇Y D)(X,Z)

+ ρ(X)B(Y, Z)− ρ(Y )B(X,Z) + ϕ(Y )D(X,Z)− ϕ(X)D(Y, Z)}
+ ϕ(X)g(ANY, Z)− ϕ(Y )g(ANX,Z).

Comparing the last two equations, for all X, Y, Z ∈ Γ(TM), we have

(2.10) ϵ{ϕ(X)D(Y,Z)−ϕ(Y )D(X,Z)} = ϕ(X)g(ANY, Z)−ϕ(Y )g(ANX,Z).

Replace Z by PZ to (2.10) and use (1.9), we have the equation (2.9). □

3. Real half lightlike submanifolds

Let M̄ = (M̄, J, ḡ) be a real 2m-dimensional indefinite Kaehler manifold,
where ḡ is a semi-Riemannian metric of index q = 2v, 0 < v < m and J is an
almost complex structure on M̄ satisfying, for all X, Y ∈ Γ(TM̄),

(3.1) J2 = −I, ḡ(JX, JY ) = ḡ(X,Y ), (∇̄XJ)Y = 0.

An indefinite complex space form, denoted by M̄(c), is a connected indefinite
Kaehler manifold of constant holomorphic sectional curvature c such that

R̄(X,Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX(3.2)

− ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}, ∀X, Y, Z ∈ Γ(TM).

Theorem 3.1 ([6, 7]). Let M be a real half lightlike submanifold of an indefinite
Kaehler manifold M̄ . Then there exist a screen S(TM) such that

J(S(TM)⊥) ⊂ S(TM).

Note 2. Although S(TM) is not unique, it is canonically isomorphic to the
factor vector bundle TM∗ = TM/Rad(TM) considered by Kupeli [8]. Thus
all screens S(TM) are mutually isomorphic. For this reason, we consider
only real half lightlike submanifolds equipped with a screen S(TM) such that
J(S(TM)⊥) ⊂ S(TM). We call such a screen S(TM) the generic screen of M .

By Theorem 3.1, the generic screen S(TM) is expressed as follow:

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))} ⊕orth J(S(TM⊥)⊕orth Ho,

where Ho is a non-degenerate almost complex distribution on M with respect
to J , i.e., J(Ho) = Ho. Denote H ′ = J(ltr(TM)) ⊕orth J(S(TM⊥)). In this
case, the general decompositions (1.1) and (1.3) reduce to

(3.3) TM = H ⊕H ′, T M̄ = H ⊕H ′ ⊕ tr(TM),
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where H is a 2-lightlike almost complex distribution on M such that

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho.

Consider null vector fields U and V , and a non-null vector field W such that

(3.4) U = −JN, V = −Jξ, W = −JL.

Denote by S the projection morphism of TM on H. Then, by the first equation
of (3.3)[denote (3.3)-1], any vector field X on M is expressed as follows

(3.5) X = SX + u(X)U + w(X)W, JX = FX + u(X)N + w(X)L,

where u, v and w are 1-forms locally defined on M by

(3.6) u(X) = g(X, V ), v(X) = g(X, U), w(X) = ϵ g(X,W )

and F is a tensor field of type (1, 1) globally defined on M by

FX = JSX, ∀X ∈ Γ(TM).

Apply J to (1.4) ∼ (1.6) and (1.17) and use (3.1) and (3.4) ∼ (3.6), we have

B(X,U) = C(X,V ), C(X,W ) = ϵD(X,U), B(X,W ) = ϵD(X,V ),(3.7)

∇XU = F (ANX) + τ(X)U + ρ(X)W,(3.8)

∇XV = F (A∗
ξX)− τ(X)V − ϵϕ(X)W,(3.9)

∇XW = F (ALX) + ϕ(X)U, ∀X ∈ Γ(TM),(3.10)

(∇XF )(Y ) = u(Y )ANX + w(Y )ALX −B(X,Y )U −D(X,Y )W.(3.11)

Definition 4. We say that M is totally umbilical [3] if, on any coordinate
neighborhood U , there is a smooth vector field H ∈ Γ(tr(TM)) such that

h(X,Y ) = H g(X,Y ), ∀X, Y ∈ Γ(TM).

It is easy to see that M is totally umbilical if and only if, on each coordinate
neighborhood U , there exist smooth functions β and δ such that

(3.12) B(X,Y ) = βg(X,Y ), D(X,Y ) = δg(X,Y ), ∀X, Y ∈ Γ(TM).

Theorem 3.2. Let M be a real half lightlike submanifold of an indefinite
Kaehler manifold M̄ . Then H is an integrable distribution on M if and only if

h(X,FY ) = h(FX, Y ), ∀X, Y ∈ Γ(H).

Moreover, if M is totally umbilical, then H is a parallel distribution on M .

Proof. Take Y ∈ Γ(H). Then we have FY = JY ∈ Γ(H). Apply J to (1.4)
with Y ∈ Γ(H) and use (1.4), (3.1), (3.4) and (3.5), we have

B(X,FY ) = g(∇XY, V ), D(X,FY ) = ϵg(∇XY,W ),(3.13)

(∇XF )(Y ) = −B(X,Y )U −D(X,Y )W.(3.14)

By straightforward calculations from two equations of (3.13), we have

h(X,FY )− h(FX, Y ) = g([X,Y ], V )N + ϵg([X,Y ],W )L.
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If H is an integrable distribution on M , then [X,Y ] ∈ Γ(H) for any X, Y ∈
Γ(H). This implies g([X,Y ], V ) = g([X,Y ],W ) = 0. Thus we have h(X,FY ) =
h(FX, Y ) for all X, Y ∈ Γ(H). Conversely if h(X,FY ) = h(FX, Y ) for all
X, Y ∈ Γ(H), then we have g([X,Y ], V ) = g([X,Y ],W ) = 0. This imply
[X,Y ] ∈ Γ(H). Thus H is an integrable distribution on M .

Moreover, if M is totally umbilical, from (3.7)-3 and (3.12), we show that

βg(X,W ) = ϵδg(X,V ), ∀X ∈ Γ(TM).

Replacing X by W and U in this equation by turns, we have β = 0 and δ = 0
respectively, i.e., we get B = D = 0. Therefore, from (3.13), we have

g(∇XY, V ) = g(∇XY,W ) = 0, ∀X ∈ Γ(TM), Y ∈ Γ(H).

This imply ∇XY ∈ Γ(H) for all X, Y ∈ Γ(H). Thus H is parallel on M . □
Theorem 3.3. Let M be a real half lightlike submanifold of an indefinite
Kaehler manifold M̄ . Then F is parallel on H with respect to ∇ if and only if
H is a parallel distribution on M .

Proof. Assume that F is parallel on H with respect to ∇. For any X, Y ∈
Γ(H), we have (∇XF )Y = 0. Taking the scalar product with V andW to (3.14)
with (∇XF )Y = 0, we have B(X,Y ) = 0 and D(X,Y ) = 0 for all X, Y ∈ Γ(H)
respectively. From (3.13), we have g(∇XY, V ) = 0 and g(∇XY,W ) = 0. This
imply ∇XY ∈ Γ(H) for all X, Y ∈ Γ(H). Thus H is a parallel distribution on
M . Conversely if H is a parallel distribution on M , from (3.13), we have

B(X,FY ) = 0, D(X,FY ) = 0, ∀X, Y ∈ Γ(H).

For any Y ∈ Γ(H), we show that F 2Y = J2Y = −Y . Replace Y by FY to the
last equations, we have B(X,Y ) = 0 and D(X,Y ) = 0 for any X, Y ∈ Γ(H).
By this results and (3.14), we see that F is parallel on D with respect to ∇. □
Proposition 3.4. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold M̄ . For all X, Y ∈ Γ(TM) and Z ∈ Γ(H), the second fundamental
forms B and C of M and S(TM) respectively are related by

(3.15)
B(Y, Z)C(X,V )−B(X,Z)C(Y, V )

= B(X,V )C(Y, PZ)−B(Y, V )C(X,PZ).

Proof. Apply ∇̄Z to (3.13)-1 and use (3.5)-2, (3.7), (3.9) and (3.14), we have

(∇XB)(Y, FZ) = g(∇X∇Y Z, V )−B(∇XY, FZ) +B(X,Z)C(Y, V )

+ ϵD(X,Z)D(Y, V )− τ(X)B(Y, FZ)− ϕ(X)D(Y, FZ)

− B(X,F (∇Y Z))−B(Y, F (∇XZ))

for all X, Y ∈ Γ(TM) and Z ∈ Γ(H). From this equation, we have

(∇XB)(Y, FZ)− (∇Y B)(X,FZ) = g(R(X,Y )Z, V )

+ B(X,Z)C(Y, V )−B(Y,Z)C(X,V )

+ ϵ{D(X,Z)D(Y, V )−D(Y, Z)D(X,V )}
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+ τ(Y )B(X,FZ)− τ(X)B(Y, FZ)

+ ϕ(Y )D(X,FZ)− ϕ(X)D(Y, FZ).

Comparing (2.1) with Z = FZ and the last equation, we obtain

(3.16)

g(R(X,Y )Z, V ) = B(Y, Z)C(X,V )−B(X,Z)C(Y, V )

+ ϵ{D(Y,Z)D(X,V )−D(X,Z)D(Y, V )}
+ ϕ(X)D(Y, FZ)− ϕ(Y )D(X,FZ).

Apply the operator ∇Y to (3.9) and use (3.9), we have

∇X∇Y V = (∇XF )(A∗
ξY ) + F (∇∗

X(A∗
ξY ))− τ(Y )F (A∗

ξX)

− ϵϕ(Y )F (ALX)− {C(X,A∗
ξY ) +X(τ(Y ))− τ(X)τ(Y )}V

− ϵ{X(ϕ(Y ))− ϕ(X)τ(Y )}W − ϵϕ(X)ϕ(Y )U, ∀X, Y ∈ Γ(TM).

Using this equation, (1.12), (1.14), (2.7), (2.8), (3.7) and (3.11), we have

R(X,Y )V = B(Y, V )ANX −B(X,V )ANY +D(Y, V )ALX(3.17)

− D(X,V )ALY − F{R(X,Y )ξ) + ϵϕ(Y )ALX − ϵϕ(X)ALY }
− ϵ{B(Y,ALX)−B(X,ALY ) + 2dϕ(X,Y ) + τ(X)ϕ(Y )− τ(Y )ϕ(X)}W.

Taking the scalar product with Z ∈ Γ(H) to (3.17), we have

(3.18)

g(R(X,Y )Z, V ) = B(X,V )g(ANY, Z)−B(Y, V )g(ANX,Z)

+ ϵ{D(X,V )D(Y,Z)−D(Y, V )D(X,Z)}
+ ϕ(X)D(Y, FZ)− ϕ(Y )D(X,FZ)

for all X, Y ∈ Γ(TM) and Z ∈ Γ(H). Comparing (3.16) and (3.18), we have

B(Y, Z)C(X,V )−B(X,Z)C(Y, V )

= B(X,V )g(ANY, Z)−B(Y, V )g(ANX,Z).

From the last equation and (1.9), we obtain (3.15). □

Theorem 3.5. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold M̄ . If M is lightlike transversal umbilical, then M is lightlike transver-
sal geodesic and the induced connection ∇ on M is a metric connection.

Proof. From (2.4), (3.7) and (3.15), we have

C(X,V ) = βg(X,U), D(X,V ) = ϵβg(X,W ),(3.19)

β2g(Y,Z)g(X,U)− β2g(X,Z)g(Y,U)(3.20)

= βg(X,V )C(Y, PZ)− βg(Y, V )C(X,PZ)

for all X, Y ∈ Γ(TM) and Z ∈ Γ(H). Replace X by V to (3.20), we have

β2{g(Y, Z) + u(Y )v(PZ)} = 0, ∀Y ∈ Γ(TM), ∀Z ∈ Γ(H).

Replace Y by U and Z by V in this equation, we have β = 0. Thus M is
lightlike transversal geodesic. From (1.10), ∇ is a metric connection of M . □
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From Theorem 2.3 and 3.5, we have the following theorem.

Theorem 3.6. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold M̄ . If Rad(TM) is a conformal Killing, then Rad(TM) is a Killing.

Theorem 3.7. Let M be an irrotational real half lightlike submanifold of an
indefinite complex space form M̄(c). Then we have c = 0.

Proof. Taking the scalar product with ξ to (3.2) and use (2.3) with ϕ = 0, (3.1)
and (3.6), for all X, Y, Z ∈ Γ(TM), we get

c

4
{u(X)g(JY, Z)− u(Y )g(JX,Z) + 2u(Z)ḡ(X, JY )} = 0.

Taking X = Z = U and Y = ξ in this and use (3.4) and (3.6), we have
c = 0. □
Corollary 1. There exist no irrotational real half lightlike submanifolds M of
an indefinite complex space form M̄(c) with c ̸= 0.

4. Totally umbilical screen distributions

Proposition 4.1. Let M be a half lightlike submanifold of an indefinite Kaehler
manifold M̄ . For all X, Y ∈ Γ(TM), we have the following equation:

(4.1)
B(Y,W )C(X,V )−B(X,W )C(Y, V )

= C(Y,W )B(X,V )− C(X,W )B(Y, V ).

Proof. Apply the operator ∇Y to (3.10) and use (3.8), we have

∇X∇Y W = (∇XF )(ALY ) + F (∇X(ALY )) + ϕ(Y )F (ANX)

+ {X(ϕ(Y )) + τ(X)ϕ(Y )}U + ρ(X)ϕ(Y )W

for all X, Y ∈ Γ(TM). Using this equation, (3.7) and (3.11), we have

R(X,Y )W = B(Y,W )ANX −B(X,W )ANY(4.2)

+ D(Y,W )ALX −D(X,W )ALY

+ F{∇X(ALY )−∇Y (ALX)−AL[X,Y ] + ϕ(Y )ANX − ϕ(X)ANY }
+ {B(Y,ALX)−B(X,ALY ) + 2dϕ(X,Y ) + τ(X)ϕ(Y )− τ(Y )ϕ(X)}U
+ {D(Y,ALX)−D(X,ALY ) + ρ(X)ϕ(Y )− ρ(Y )ϕ(X)}W.

Taking the scalar product with V to (4.2) and using (3.6), we have

g(R(X,Y )W,V ) = B(Y,W )C(X,V )−B(X,W )C(Y, V )(4.3)

+ ϵ{D(Y,W )D(X,V )−D(X,W )D(Y, V )}
+ B(Y,ALX)−B(X,ALY ) + 2dϕ(X,Y ) + τ(X)ϕ(Y )− τ(Y )ϕ(X),

due to g(FX, V ) = 0 for all X ∈ Γ(TM).
On the other hand, taking the scalar product with W to (3.17) and using

the fact g(FX,W ) = 0 for all X ∈ Γ(TM), we have

g(R(X,Y )W,V ) = C(Y,W )B(X,V )− C(X,W )B(Y, V )(4.4)
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+ ϵ{D(Y,W )D(X,V )−D(X,W )D(Y, V )}
+ B(Y,ALX)−B(X,ALY ) + 2dϕ(X,Y ) + τ(X)ϕ(Y )− τ(Y )ϕ(X)

for all X, Y ∈ Γ(TM). Comparing (4.3) and (4.4), we have (4.1). □

Definition 5. We say that S(TM) is totally umbilical [3] in M if, on any
coordinate neighborhood U ⊂ M , there is a smooth function γ such that

(4.5) C(X,PY ) = γ g(X,Y ), ∀X, Y ∈ Γ(TM).

In case γ = 0 (γ ̸= 0) on U , we say that S(TM) is totally geodesic (proper
totally umbilical ) in M .

The type number t∗(x) of M at any point x is the rank of the operator A∗
ξ .

Theorem 4.2. Let M be a real half lightlike submanifold of an indefinite
Kaehler manifold M̄ . If S(TM) is proper totally umbilical, then t∗(x) = 1
and M is irrotational.

Proof. Assume that γ ̸= 0. From (3.7), (3.15) and (4.5), we have

B(X,U) = γg(X,V ), D(X,U) = ϵγg(X,W ),(4.6)

B(Y,Z)g(X,V )−B(X,Z)g(Y, V )(4.7)

= B(X,V )g(Y, PZ)−B(Y, V )g(X,PZ)

for all X, Y ∈ Γ(TM) and Z ∈ Γ(H). Taking Y = U and Z = V to (4.7) and
using (4.6), we show that B(Y, V ) = 0 for all Y ∈ Γ(TM). Replace Y by U to
(4.7) and use the facts that B(Z,U) = 0 and B(Y, V ) = 0, we have

(4.8) B(X,Z) = 0, ∀X ∈ Γ(TM), ∀Z ∈ Γ(H).

On the other hand, from (4.1), (4.5) and (4.8), we get

B(X,W )g(Y, V ) = B(Y,W )g(X,V ), ∀X ∈ Γ(TM).

Replace Y by U in this and use the fact B(U,W ) = 0 due to (4.6), we have

(4.9) B(X,W ) = 0, ∀X ∈ Γ(TM).

From (4.6)-1, (4.8) and (4.9) we have t∗(x) = 1.
Take X = ξ in (4.6)-2 we have ϕ(U) = 0. Replace Y by U to (2.9) and use

(4.6)-2 and the facts that ϕ(U) = 0 and γ ̸= 0, we have

ϕ(X)g(Z,W ) = ϕ(X)g(U,PZ), ∀X, Z ∈ Γ(TM).

Take Z = W in this equation we get ϕ(X) = 0 for all X ∈ Γ(TM). Thus, by
Note 1, we show that M is irrotational. Therefore we have our assertions. □

Corollary 2. Let M be a real half lightlike submanifold of an indefinite Kaehler
manifold M̄ such that S(TM) is totally umbilical. If t∗(x) > 1, then S(TM)
is totally geodesic.

Theorem 4.3. Let M be a real half lightlike submanifold of an indefinite com-
plex space form M̄(c). If S(TM) is totally umbilical in M , then c = 0.
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Proof. Taking the scalar product with ξ to (3.2) and use (2.3), we have
c

4
{u(X)g(JY, Z)− u(Y )g(JX,Z) + 2u(Z)ḡ(X,JY )}

= ϕ(X)D(Y, Z)− ϕ(Y )D(X,Z), ∀X, Y, Z ∈ Γ(TM).

Taking X = Z = U and Y = ξ in this and using (3.4), (3.6) and (4.2), we have

−3

4
c = ϵ γ {ϕ(U)g(ξ,W )− ϕ(ξ)g(U,W )} = 0, i.e., c = 0. □

Corollary 3. There exist no real half lightlike submanifolds M of an indefinite
complex space form M̄(c), c ̸= 0 such that S(TM) is totally umbilical.

Theorem 4.4. Let M be a real half lightlike submanifold of an indefinite com-
plex space form M̄(c) such that S(TM) is totally umbilical in M . Then S(TM)
is totally geodesic in M .

Proof. Taking the scalar product with N to (1.18) and using (1.13), (1.14) and
the fact that c = 0 due to Theorem 4.3, we have

(4.10) ḡ(R(X,Y )Z, N) = ϵ{ρ(X)D(Y, Z)− ρ(Y )D(X,Z)},
for all X, Y, Z ∈ Γ(TM). Using (1.7) and (1.8), we have

(4.11)
ḡ(R(X,Y )PZ, N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+ C(X,PZ)τ(Y )− C(Y, PZ)τ(X).

Using (1.10), (4.5), (4.10) and (4.11), we get

γ {B(Y, PZ)η(X)−B(X,PZ)η(Y )}
+ ϵ {D(Y, PZ)ρ(X)−D(X,PZ)ρ(Y )}

= {X[γ]− γτ(X)}g(Y, PZ)− {Y [γ]− γτ(Y )}g(X,PZ)

for any X, Y, Z ∈ Γ(TM). Replacing X by ξ in this equation, we have

(4.12) γB(Y, PZ) + ϵD(Y, PZ)ρ(ξ) + ϕ(PZ)ρ(Y ) = {ξ[γ]− γτ(ξ)}g(Y, PZ)

for all Y, Z ∈ Γ(TM). From the second equations of (1.9) and (4.6) we get
ϕ(U) = 0 and D(U,U) = 0. Taking Y = PZ = U in (4.12) and using the fact
B(U,U) = γ due to (4.6), we have γ = 0. Thus we have our theorem. □

The induced Ricci type tensor R(0, 2) of M is defined by

(4.13) R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }, ∀X, Y ∈ Γ(TM).

Consider the induced quasi-orthonormal frame field {ξ;Wa} on M such that
Rad(TM) = Span{ξ} and S(TM) = Span{Wa}ma=1. Using this frame field
and (4.13), we obtain

(4.14) R(0, 2)(X,Y ) =

m∑
a=1

ϵa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N),

where ϵa = g(Wa,Wa) is the sign of Wβ . In general, the induced Ricci type

tensor R(0, 2) is not symmetric [2, 3, 4]. A tensor field R(0, 2) of M is called its
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induced Ricci tensor of M if it is symmetric. A symmetric R(0, 2) tensor will
be denoted by Ric. M is called Ricci flat if its Ricci tensor vanishes on M̄ . If
dim(M) > 2 and Ric = κg where κ is a constant, then M is called to be an
Einstein manifold. For dim(M) = 2, any M is Einstein but κ is not necessarily
constant.

Theorem 4.5. Let M be an irrotational real half lightlike submanifold of an
indefinite complex space form M̄(c) such that S(TM) is totally umbilical. Then
R(0, 2) is an induced Ricci tensor of M . Moreover, if M is an Einstein manifold,
then M is Ricci flat.

Proof. Using (1.18), (1.19) and Theorem 4.3 and 4.4, (4.14) reduces to

(4.15) R(0, 2)(X,Y ) = D(X,Y )trAL − ϵg(ALX,ALY ) + ρ(X)ϕ(Y ),

where trAL is the trace of AL. Thus R(0, 2) is a symmetric Ricci tensor Ric.
Let M be an Einstein manifold. Replacing Y by U in (4.15) and using the
facts ϕ(U) = 0 and g(ALU,X) = g(ALU,X) − ϕ(U)η(X) = D(X,U) = 0 for
any X ∈ Γ(TM), we obtain κg(X,U) = 0 for all X ∈ Γ(TM). Replacing X by
V in this equation, we have κ = 0. Thus M is Ricci flat. □
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