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ON SOME COMPLETE COMPLEX SUBMANIFOLDS IN
A LOCALLY SYMMETRIC KAEHLER MANIFOLD

JuNGg-HwaAN KwoN AND JIN SUK PAK

ABSTRACT. The purpose of this paper is to study complete com-
plex submanifolds of a locally symmetric Kaehler manifold with
non-positive totally real normal bisectional curvature and k-pinched
totally real tangent bisectional curvature.

1. Introduction

The theory of complex submanifolds of a complex space form is one
of the most interesting topics in differential geometry and it has been
investigated by many geometers from the various different points of view
([1], [2] and [5]-[9)).

Let M be an n-dimensional complex submanifold of an (n + p)-
dimensional Kaehler manifold M’. We denote by H'(P’,Q’) the holo-
morphic bisectional curvature of M’ for any holomorphic planes P’ and
Q. It is totally real bisectional curvature if P’ and @’ are orthogonal
([4]). It is also said to be tangent (resp. normal) if P’ and Q" are both
tangent to M (resp. either P’ or @' is normal to M). The normal holo-
morphic bisectional curvature is closely related to the normal curvature
of M.

It seems to be interesting for us to give an information about the
squared norm |a|*> = hy of the second fundamental form « of M in
order to solve the Chern-type problem in Kaehler geometry which is
given as below.

Problem. For an n-dimensional complete complex submanifold M
of an (n+p)-dimensional complex space form M™V?(c) of constant holo-
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morphic sectional curvature ¢, does there exist a constant h in such a
way that M is totally geodesic provided hy < h (or ha > h)7

The purpose of this paper is to research the Chern-type problem in the
case where the ambient space is a locally symmetric Kaehler manifold
which has non-positive totally real normal bisectional curvature and k-
pinched totally real tangent bisectional curvature. More precisely, we
shall prove

THEOREM. Let M’ be an (n + p)-dimensional locally symmetric
Kaehler manifold which has non-positive totally real normal bisectional
curvature and k-pinched totally real tangent bisectional curvature (4 <
k £ 19). Let M be an n-dimensional complete complex submanifold of
which normal connection in M’ is proper. Then there exists a constant
h in such a way that M is totally geodesic provided hy < h.

2. Kaehler manifolds

Let M be a complex m(2 2)-dimensional connected Kaehler manifold
equipped with Kaehler metric ¢ and almost complex structure J. For
the Kaehler structure {g, J}, it follows that J is integrable. We can
choose a local field {Ey} = {E4,Fa:} = {E1,..., B, E1n,...,Emps }
of orthonormal frames on a neighborhood of M, where Ex. = JE4
and A* = m -+ A. Here the indices A, B,... run from 1 to m and the
indices ¢, 3,... run from 1 to 2m = m™*. We set Uy = -%(EA —1E4+)
and U4 = %(EA + iEa+), where i is the imaginary unit. Then {Ua}
constitutes a local field of unitary frames on the neighborhood of M.
This is a complex linear frame which is orthonormal with respect to the
Kaehler metric, that is, g(Ua,Up) = dap. Let {0,}, {0as} and {Ous}
be the canonical form, the connection form and the curvature form,
respectively on M with respect to the local field {E,} = {E4, Ea-} of
orthonormal frames. Then we have the following structure equations

Ao+ Bag A5 =0, Oop ~Oa-p- =0,

B
(21) 905*5 + 6’3‘5* = 07 90&6 + 950-’ = 07 904[3" - Gﬁoz”‘ - 0
dfos +200"Y A G'Yﬁ = Oag, Ous = —3 ZKQE’NQ A B,

y 'y,t.‘r
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where K, 3,5 denotes the components of the Riemannian curvature ten-
sor of M.

Now, let {wa} be the dual coframe field with respect to the lo-
cal field {Ua} of unitary frames on the neighborhood of M. Then
{wa} = {w1,...,wn} consists of complex valued 1-forms of type (1,0)
on M such that wa(Ug) = dap and wi,...,wm,W1,--.,wn are lin-
early independent. The Kaehler metric ¢ of M can be expressed as
g=2) ,was®wy4. Associated with the frame field {U,4}, there exist
complex valued forms w4p, which are usually called connection forms
on M such that they satisfy the structure equations of M:

dw 4 +ZUJAB Awg =0,
B

wap+wWpa =0,
(2.2) dwap + ZUJAC Nwep = s,
C
QAB = ZRABCDL‘)C’ Nwp,
C.D

where Q4p (resp. Ripeop) denotes the curvature form (resp. the com-
ponents of the Riemannian curvature tensor R) of M. So, by (2.1) and
(2.2), we obtain

(2.3) Rigep =—{(Kuapecp + Ka-Be-p) +i(Kapep — Kase+p)}-

(2.2) implies the skew-Hermitian symmetry of 45, which is equivalent
to the symmetric condition

(2.4) Rigop = Rzape-

Moreover, the first Bianchi equation Y 5 Q45 Awp = 0 is given by the
exterior differential of the first equation and the third equation of (2.2},
which implies the further symmetric relations

(2.5) Ripop = Ricep = Rpocsa = Rppea-

Next, relative to the frame field chosen above, the Riccl tensor S of
M can he expressed as follows:

S=> (S4pwa®Wp + S3554 ®wp),
A.B
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where S,5 = 5. o Rocas = Spa = Sip. The scalar curvature r of M
is also given by r =23, S44-

The components Rigcp.g and Rjipop.g of the covariant derivative
of the Riemannian curvature tensor R are given by

> (Riascp.ewe + Rigop.505)
E

(2.6) = dRigop — Z(REBCDEUEA + RipcpweB
E

+ Rigppwec + RipceWED)-

The second Bianchi identity is given by

(2.7) Ripep.r = Rigeb.o-
On the other hand, if a plane P is invariant by the complex structure

J, then it said to be holomorphic. For the plane P spanned by X and
Y in P, the sectional curvature K (P) is usually defined by

9(R(X, Y)Y, X)
(XvX)g(K Y) - Q(X: Y)2

and the sectional curvature K(P) of the holomorphic plane P is called
the holomorphic sectional curvature, which is denoted by H(P). The
Kaehler manifold M is said to be of constant holomorphic sectional cur-
vature if its holomorphic sectional curvatures H(P) are constant for all
holomorphic planes at all points on M. Then M is called a complex
space form, which is denoted by M™(c), provided that it is of constant
holomorphic sectional curvature ¢, of complex dimension m. It is seen
in Wolf [11] that the standard models of complex space forms are the
following three kinds : the complex projective space C'P™, the complex
Euclidean space C™ or the complex hyperbolic space CH™, according
asc>0,c=0o0r ¢<0. It is also shown in [11] that they are complete
simply connected complex space forms of dimension m. The Riemannian
curvature tensor R ip-p of M™(c) is given by

K(P)=K(X,Y) = p

C
Ripep = 5(5AB5CD +d4c0BD)-

Given two holomorphic planes P and @ in T, M at any point z in M,
the holomorphic bisectional curvature H(P, () detcrmined by the two
planes P and @ of M is defined by

g(R(X,JX)JY,Y)
(X, X)g(Y,Y) — g(X,¥)?’

(2.8) H(P.Q) =~
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where X (resp. Y') is a non-zero vector in P (resp. @). It is a simple
matter to verify that the right hand side in (2.8) depends only on P
and @ and so it is well defined. It may be also denoted by H(P,Q) =
H(X,Y). It is easily seen that H(P,P) = H(P) = H(X,X) =: H(X)
is the holomorphic sectional curvature determined by the holomorphic
plane P. We denote by P4 the holomorphic plane [E4, JE4] spanned
by B4 and JEA = F4-. We set

H(P4s,Pg)=H(Es,Ep) =:Hap (A#B),
H(Py,Py)=H(Ps) = Hag =: Ha.

The holomorphic bisectional curvature Hap (4 # B) and the holomor-
phic sectional curvature H4 are given by
g(R(EA7 JEA)JEBa EB)
H = =—-K " - .A B,
AB AL NS AA*BB", #
g(R(Ea, JEA)JE4, Es)

A7 " g(BE4,Ea)g(Ea, Ea) Adrad

By (2.3), we have

(2.9) Haip=Rjiaps (A#B), Hsy=Rjisuz

Using the first Bianchi identity the holomorphic bisectional curvature

H(X,Y) for any non-zero vectors X and Y can be reformed as

R(JX,JY)X.Y)+ g(R(JY,X)JX,Y)
g(XaX)g(YY)_g(-X7Y)2 .

HX,Y) = - &

Since the Kaehler connection V on M is almost complex, we have VJ =
0, from which it follows that the Riemannian curvature tensor R of the
Kaehler manifold possesses the properties

R(X,Y)oJ=JoR(X,Y), R(JX,JY)=R(X,Y).

So we see that

gRX, V)X Y) +g(R(JY, X)JX. Y)

HXY) = = X 5507, 7) = g (X, V)2

Suppose that X, Y, JX and JY are orthonormal. Then we get
(2.10) HX,Y)=K(X,Y)+ K(X,JY).
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For the orthonormal set {X,JX,Y,JY}, we set X' = Z5(X + ) and
Y =

—\%J(X—Y). Then it is easily seen that the set {X', JX',Y', JY'}
is also the orthonormal one. So (2.10) implies

(2.11) HX' Y)=KX,Y)+ KX K JY').

On the other hand, we have

HX',Y") = g(R(X', JX)JY',Y")

- %{H(x) FH(Y) +2H(X,Y) — 4K(X,JY )}

and hence we have
(2.12) AH(X',Y)=2H(X,Y)+ H(X)+ HY) - 4K(X,JY).

Next we set X" = %(X +JY) and V" = %(JX +7Y). Then it is
easily seen that the set {X”,JX”,Y",JY"} is also the orthonormal
one. Similarly it follows from (2.12) that

(213)  AH(X",Y")=2H(X,Y) + H(X) + H(Y) — 4K(X,Y).
Summing up (2.12) and (2.13) and using (2.10) we have
(2.14) 2H(X',Y') + 2H(X",Y") = H(X) + H(Y)

for any orthonormal vectors X, Y, JX, and JY.

Now, we introduce a fundamental property for the generalized maxi-
mum principal due to Omori [10] and Yau [13].

THEOREM O-Y. Let M be a complete Riemannian manifold whose
Ricci curvature is bounded from below on M. If a C*-function f is
bounded from above on M, then, for any positive constant e, there
exists a point P such that

IVF(P) <e, Af(P)<e, supf—e< f(P).

If a C?-function f is bounded from below on M, then, for any positive
constant ¢, there exists a point P such that

IVf(P)| <&, Af(P)>—e, inff+e> f(P),

where Vf is the gradient of the function f and A denotes the Laplacian
operator on M.
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3. Complex submanifolds

Let M’ be an (n+p)-dimensional connected Kaehler manifold with the
Kaehler structure (¢',J’). Let M be an n-dimensional connected com-
plex submanifold of M’ and let ¢ be the induced Kaehler metric on M
from g’. We can choose a local field {Ua} = {U;, U} = {Uy,...,Upip}
of unitary frames on a neighborhoad of M’ in such a way that restricted
to M, Uy,...,U, are tangent to M and the others are normal to M.
Here and in the sequel, the following convention on the range of indices
is used throughout this paper, unless otherwise stated :

A B, C, ---=1, ...,n,n+1, ..., n+Dp;
i, ok =1 L, My z, Y, 2 -=n+1l ..., n+p.

With respect to the frame field {Ua}, let {wa} = {w;,w,} be its dual
frame field. Then the Kaehler metric tensor ¢’ of M’ is given by g’ =
2> ,wa®wy4. The canonical forms w4 and the connection forms w4p of
the ambient space M’ satisfy the structure equations appeared in (2.2).
Restricting these forms to the submanifold M, we have

(3.1) wz =0,

and the induced Kaehler metric tensor g of M is given by g =25 Wi ®
;. Moreover {U;} is a local unitary frame field with respect to the
induced metric and {w;} is a local dual frame field due to {U;}, which
consists of complex valued 1-forms of type (1.0) on M. Of course,
Wi .., Wy, W1, ..., Dy, are linearly independent, and {w;} is the canon-
ical forms on M. It follows from (3.1) and Cartan’s lemma that the
exterior derivative of (3.1) give rise to

(3.2) wos = 3 hiws,  hy® = hy®
i

The quadratic form o = 3 .y hi;%w; @w; @U, with values in the normal
bundle NM on M in M’ is called the second fundamental form of the
submanifold M. From the structure equations for M’, the structure
equations for M are similarly given by

dwi—l—Zwij /\wJ-:O, Wiy +wji=O,
j

dw; + E wig Nwrg = Qyy, Q= E Ryjppwr AW,
k k.l

(3.3)
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where Q = (;;) (resp. Rj;;7) denotes the curvature form (resp. the
component of the Riemannian curvature tensor R) of M.
Moreover, the following relationships are obtained ;

(3.4) Qwpy + > waz Awoy = oy, oy = Ry AW,
z k.l

where €2, is called the normal curvature form of M and Rz, are the
components of the normal curvature tensor of M. For the Riemannian
curvature tensors B and R’ of M and M’ respectively, it follows from
(2.2) and (3.1)-(3.3) that we have the Gauss equation

(35) 'ij:l 7,_9]@[ Zh’jk h'zl -
And also by means of (2.2), (3.1), (3.2), and (3.4), we have

(3.6) Rayni = Ry + Z his "Rt
J

The components S;5 of the Ricci tensor § and the scalar curvature r of
M are given by

(3-7) Z Jikk 77’ Z jikk

where we put h;; =3 ok hik Thy;® and hy = ZJ i
On the other hand the components hi;x® and hy;z® of the covariant
derivative of the second fundamental form on M are given by

k

= dhijm — Z(hkjmwki -+ hikmwkj) + Zhiijmy-

k Y

Substituting dh;;” in this definition into the exterior derivative of (3.2)
and using (2.2), (3.1)-(3.3), and (3.8), we have

(3.9) hije® = hi;®,  hyE” _R;z]k



On some complete complex submanifolds 261

Similarly, the components hi;x® and A" (resp. hy;5° and hy;5°)
of the covariant derivative of hi;.” (resp. h;;;”) can be defined by

D (higiwi + hygo)
1

(3.10) = dhiji” — Z(hm‘kmwu + har®wi; + hijitwi)
I
-+ Z hijk:yw:z:y:
Y
Z(hijﬁlmwl + by W)
)
(3.11) = dhyji” = > (hyp wis + ha"wi; + hi" D)
]
y

Differentiating (3.8) exteriorly and using the properties d* = 0, (3.3),
(3.4) and (3.7)-(3.9), we have the following Ricei formula for the second
fundamental form

(3.12) hijr® = hijis™,  hirr” = hym”

(3.13)  hijer® — hyti™ = Y (Rigizhrs™ + Biggehei®) — D Rgypihis®.
u

T

4. The Laplacian operator

In this section, the Laplacian of the squared norm of the second fun-
damental form on a complex submanifold of a Kaehler manifold will be
calculated. Let M’ be an (n + p)-dimensional Kaehler manifold and
let M be an n-dimensional complex submanifold of M’. Let f be any
smooth C?-function on M. The components f; and f; of the exterior
derivative df of f are given by

df = Z(fiwz' + f3wi)-
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Moreover, the components f;; and f;3 (resp. f;; and f3;) of the covariant
derivative of f; (resp. f;) can be defined by

Z(fz‘jwj + fi3005) = dfi — ijwjz‘a
7 J

> (fajws + F5@;) =dfs — > f50u.
i J

The Laplacian of the function f is by definition given as

(4.1) Af = Z Fii + F) = 2me

Now, we calculate the Laplacian of the squared norm ho = |a|? of the
second fundamental form o on M. By (3.11) and the second equation
of (3.9), we have

Z(h‘wkl wy + hy 5 @)
l
——ap R s ;o _
- dR.LL]k + Z mlykwli + R;E?'lkwl.l + R'fv'ﬂ_w“) Z yith“
Y
_ / ! X ! o __-_ /_
== dngk + E ZAjRWAL T Rjapwa; + ijA‘*’A/e) Z RAz‘jh-wa
A
/ /
- Z(Rby‘/kw?ﬂ + R;Eiyﬁwy] + R.EL]gjwyk) =+ Z R[_LJ;C‘JTI?
1

from which together with (2.2), (2.6) and (3.2), it follows that
Z(hzgmwwl + AR @)
= Z Tijk: AWA + R.{iijz':ﬁwA)

Z zZyjk hi¥w + me;\h j1Twp + RMJyhkljwl)

-+ ZRT"LJk ol (.dl.
Comparing the coefficients of w; in the above equation, we have

(42) hijm = R.T:L]ll Z(R;yjkh7ly+R‘ka Jl +ZRHJA

Y
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On the other hand, from (3.13), we get

(4-3) hzjlcl'm - hijl_lcm

Z rkzlh’rﬂw + R'rk:_)L z leym "'.7
=Y (i B A + BV R hei®) = Y b "B hig®
Y,r

with the help of (3.5) and (3.6). Combining (4.2) with (4.3), we obtain
hijkz'm =- R,

Fiil:k

- Z Tyl 7ky + Rmyathk’ + R'I:yklh )

+ Z T‘]klh”m + Rmklh"V‘T + Rmth )

(4.4)
-~ Z koY hei” + B R YRy )
Y.
— R hVhi?.
Y,

The matrix A = (A,”) of order p defined by A,* =3, hi;"hi¥ is a
positive semi-definite Hermitian one. Summing up & = [ in (4.4), we
have

Zh”bﬂ"}c == ZRCLZ]}C k

—Z(Ra_"wlh,h + R har? + Ry ki)

(4.5) i , )
Z lgkkhl’t Rpihiy™ + Rignhaue”™)

— Z hz-]‘,c hkj "+ h];;"hm“b) — ZAymhijy.
k

¥

Moreover, by (4.1), we have

(4.6) Ahy = Z{Zhu %0k + (D PR}

CB,Z,_] ."CZ]
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The first term in the right hand side of (4.6) is equivalent to

(4.7) Z (hijkl_cmﬁijm + hijihige” + hz’jl_cwﬁijl_cm + hijmﬁz‘jﬁ:k:x)'
5,5,k

And the second term is expressed as

(4-8) Z (hz‘jl_ckmﬁijm + hz‘jEwEijl_cw + hijkmuﬁijkm + hijmTi'ijkl_cm)-
r.4,79,k

On the other hand, (4.2) gives
Z h’ijl_ckm = Z R:mgk :k

k
- Z zyjk ka + R'yzk jky) -+ Z R;—-ij/“chrkm-

k,r

(4.9)

Since A is the positive semi-definite Hermitian matrix of order p, its
eigenvalues A, are all non-negative real valued functions on M and it is
easily seen that

1
(4.10) ho? 2 hy 2 —ho2, Z,\ =TrA = h,,

- n
hy? 2 TrA” = Z,\2> Lhy?,
where we put hy = 3, ;hiz°h;;%. Substituting (4.7)-(4.9) into (4.6),

we obtain the formula for the Laplacian of the squared norm hy of the
second fundamental form o« on M. That is, we have

Ahy =2)Vol> =2 > Rl 3.hi" =2 > Rh=z

“l"Z’J k: !T,’Z.,_']Ju
-8 Z Rwyjkh’” ’»7 -2 Z A, UR;ukk
(4.11) ,y,4.5,k z.yk
+4 > Blihwuhy®+4)  Rlch
@,5,9.k,1 (N
— 4hy — 2Tr A2,

with the aid of (2.4), (2.5), (2.7), (4.5), and (4.6), where the squared
norm |Va|? of the covariant derivative Vo of o is defined by

(4.12) [Val* = Z (heje™hagk™ + higi™hiE")-

x,1,7.k
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5. Normal curvature tensor

Let M’ be an (n + p)-dimensional Kaehler manifold equipped with
Kaehler structure {g’, J'} and let M be an n-dimensional complex sub-
manifold of M’ endowed with induced Kaehler structure {g, J} from the
Kaehler structure {¢’,J’}. Let us denote by V+ the normal connection
on M, namely, it is the mapping of TM x NM into NM defined by

V4{X,V) = V! xV = the normal part of V'xV

for any tangent vector field X in TM and any normal vector field V
in NM, where V' is the Kaehler connection on M’, and TM and NM
are the tangent bundle and the normal bundle of M, respectively ([12]).
The normal curvature tensor R+ on M is defined by

RY X, Y)W = (VIxVEy - V5 Vix = Vi)V,
where X, Y ¢ TM and V € NM. If it satisfies
RH(X,Y)V = f g(X,JY)J'V

for a function f on M, then the normal connection V* is said to be
proper. In particular, if f is a non-zero constant or zero, then it is said
to be semi-flat or flat, respectively (for details, see [3] and [12]).

Now, in order to consider the normal curvature transformation, we
first investigate the local version of the normal curvature tensor. By
means of (3.6) of the normal curvature tensor, we can define a linear
transformation T on the np-dimensional complex vector space 2™ con-
sisting of tensors (£;x) at each point on M by

TN’ (fzk) = (77:1:/»")7 Nk = Z R:Eykl_gyl'
y,l

We denote by (R,;**) the matrix of the linear transformation 7. Then
T is the self-adjoint operator with respect to the definite metric canon-
ically defined on Z™°. The linear operator defined by the np x np Her-
mitian matrix (R,;°F) is called the normal curvature operator on M. We
assume that the matrix (R,;**) is diagonalizable, namely, it satisfies

(5.1) Bayrr = fa:kfsylmk = fakOoyOi,
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where every eigenvalue f,x of T is a real valued function on /. Then
the normal connection is said to be proper. In this case, we can choose
suitably an unitary frame field {U4} = {U;, U, } in such a way that the
matrix (R,;%*) is of the form (5.1). By (3.6) and (5.1), we have

(5.2) Rgﬁykf = .f:ckéccyé‘k:l - Z hkjmﬁﬂy'
J

6. Locally symmetric spaces

In this section, let (M’, ¢’) be an (n-+p)-dimensional Kaehler manifold
and let M be an n-dimensional complex submanifold of M’, Assume
that M’ is locally symmetric, the normal connection of M is proper and
it satisfies the following two conditions concerning with holomorphic
bisectional curvatures:

(x1) A totally real tangent bisectional curvature is bounded from
above by ag and from below by a;.

(¥2) A totally real normal bisectional curvature is bounded from
above by as.

Then M’ is said to satisfy the condition (%) if it satisfies the above
conditions (*1) and (x2). In particular, it is said to be k(= 2)-pinched
provided that ag > 0.

For the local field {E 4, F 4.} of orthonormal frames associated with
the submanifold chosen in Section 2, it follows from (2.9) that

H'(P}, F) = H'(Ey, B) = Hjs = Ry (5 # ),
H’(P;,Pé) = H,(Ema Ey) = a/ck = Rgf::ckl_c'
If M’ satisfies the condition (*), then we have

a1 = H;,jk Sap (J#k), He = a

REMARK 6.1. Let M’ be an (n + p)-dimensional complex space form
M"™*P(c) and of constant holomorphic sectional curvature ¢. Then M’
is locally symmetric and it satisfies the condition (x) with ag = a; =
az = £ and it is 1-pinched (¢ # 0).

In the rest of this section, we denote by 7 (i) the 4, term in the right
hand side of (4.11). First of all, we estimate Ahs from the below on
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the complex submanifold M. In order to estimate 7 (4) and 7(5), we
prepare some basic formulas.

First of all we check the relation between the normal curvature and the
totally real bisectional curvature H'(P’,Q’) for a tangent holomorphic
plane P’ and a normal holomorphic plane @’ in M’. A totally real
plane [X,Y] is defined by a plane {X,Y} of the orthogonal pair X
and Y, and its image {J'X,J'Y} by the almost complex structure J'.
For two holomorphic planes P’ = [X,J'X| and Q' = [Y,J'Y], where
X and Y are orthogonal vectors, the totally real bisectional curvature
H'(P',Q")=H'(X,Y) on M' is defined by

g (R(X,J' X)JV.Y)

H'(P,Q)=H(XY)= J(X. X)g (V,Y)

Accordingly, we have by (5.2)

(61)  Hiy=H'(Es, By) = Ry = for — > hi“P™

Between the totally real bisectional curvature and the normal curva-
ture, we have the following relation. By (6.1) and the condition (%2),
the normal curvature satisfies

(6.2) For = Hpp + 3 hy“his™ S an + Z Py s,
J g

and consequently 7 (4) and 7 (5) can be estimated as follows:

4)=-8 > Rl ihhiy”

&,Y,4,0.k
= =8> fajhu;"hi" + SZhﬂ by
IL,Z,_]
—8 Z as -+ z hjkxhjka")hwa'hw + 8h4
IZ?,'Z,_']
= —8ashy + 8h4 — 82 Zhjkmhfjk ) R

.7 k

where the second equality follows from (5.2) and the third inequality
is derived by (6.2). Since Yo zo? S (370, zo)? for non-negative
numbers &1,...,%m, it is clear that

-8 Z(Z hin“RiK")? 2 —8 Z(Z bR )
@7 k r py?
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and consequently
(6.3) T(4) 2 —8ashy + 8hy — Shy?.

On the other hand, let A be the positive semi-definite Hermitian

matrix defined by (Ay”) = (32,  hjx"hyk?) and let A, be its eigenvalue.
Then 7 (5) can be estimated as follows ;

T(5)==2) AebuyRyp = =2 MoRpx
.,k

z,y,k

= —2as Z Az = —2nas Z Az
x.k T

with the help of (¥2), from which and (4.10) we have
(6.4) T(5) 2 —2nashs.

Next, we estimate 7 (6) and 7 (7). For the sake of the estimation, we
consider the curvature operator 77 on M’. From the symmetric relation
(2.5), on the n*-dimensional complex vector space 27" = T, MC x T, M®
which consists of symmetric tensor (£;;) at each point z on M, we can
define a linear transformation 77 by

T' (&) = (mis)s Mg = D _ Rfirber.
Lk

We denote by (R'x;¥) the matrix of the linear transformation 77. The

linear operator 7" defined by the n? x n? matrix (R'y ") is called the

curvature operator on the submanifold M (for details, see [9]). Since

T’ is the self-adjoint operator with respect to the metric canonically

induced on E;}Q, every eigenvalue R;; of 7" is a real valued function. So

we have

(6.5)

Bl = Ry = Rydyb, Riy = Riy; = H'(B, E,) = H); (i # ).

For distinct indices ¢ and j, vectors E;, E;, JE; and JE; are or-

thonormal. So, by (2.14) we get

H'(E) + H'(E;) = 2H'(E}, E) + 2H' (B!, EY)),
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where {E}, E}, E', E}'} are the orthonormal set associated with E; and
F; chosen in Section 2, from which together with the assumption (1)
it follows that

(6.6) day S H'(E) +H'(E;) £4ag (1 #7)
Summing up (6.6), we have 437, a1 = 3%, (H; + Hj) £ 45, ao,
which implies that
(6.7) 2na; < ZHJ' < 2nay,

J
where the first or second equality holds if and only if H 5 = 2a; or 2aqg
for any index j. From (3.5) and (*1), the scalar curvature r is given by

r=2 E S_' =2 E R_y_ykk—z(: : 7333 Z ijk
i#k
§ H’+§ Hjy) = 2hs

J#k
> 2ZHJ’. +2n(n — 1)a; — 2hy.
g
Similarly, by (*1) we have
r 2> Hj+2n(n — ag — 2hs.
J
Consequently we have

(6.8)  r/2+hy—n(n—1)ag <> Hj<r/2+hy—n(n—1a,

J

where the first or second equality holds if and only if Hj; = R, i =

or a; for any distinct indices i and j. By (6.7) and (6. 8) we have

Qg

(6.9) 2n(n + Day £ 7+ 2hy £ 2n(n + 1)ay,

where the first or second equality holds if and only if H]; = a1 or ao for
any distinet indices 7 and j. On the other hand, from (6.6), we have

S (H+H)Z4n-1)a fork=1,...,n
)
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which and (6.8) imply

(n—2)H 2 4(n— L)ay — ZHJ’
J
24n—1a; —{r/2+ho—=n(n— a1}
=<7’L-1)(7’L+4)a1—7"/2—h2,

and consequently

(n—1)(n+4)a, — /2~ hy

n—2

(6.10) H)

J

H\/

for any index j.

LEMMA 6.1. Let M’ be an (n+ p)-dimensional Kaehler manifold sat-
istying the condition (x) and let M be an n (2 3)-dimensional complex
submanifold of M'. If the scalar curvature of M is bounded from below,
then the Ricci curvature of M is bounded from below.

Proof. Since the Ricci curvature ;5 of M is given by

S5 = ZREJ"»“E JJJJ + Z Rmkk Z hir®h®,
k .k

k(#3)

by using the condition n 2 3, (x1), (6.9) and (6.10), we have

S=Hj+ Y Hj—> hp"hyt
z,k

k{#3)
-1 4)a; —r/2 = h
2 (=Lt 4a —r/ 2 +(n—)ay — ha
n—2
2(n—1D(n+1)ay —1/2 — hy
= — hy
n—2
n+
z — {2(%——1)@1—72&0} hz

By (6.9) the function r+2h; is bounded and therefore the result together
with the assumption about the scalar curvature of M yield the fact that
hs is bounded. Hence the Ricci curvature of M is bounded from below,
which completes the proof. a
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Now, we estimate 7 (6). By (6.5), we have

T(6) =4 Z Ry, thit™hig®

$5i5j7k7l

=4 Z Réjéikéjlhklm-ﬁijm

m"z."j’k’l

=4 Z johijmﬁz‘jw,

w,’z'?J

from which together with (1), (6.5) and (6.10), it follows that

6) = 42 thg Z_j
= 42 H,thmh“ + Z Zhwmﬁum)

3(F1) G
(n—1(n+4)a; —r/2 — he
> & T
42{ — > bR
Y S by }
J(#4) @
-1 4 —7r/2—h —
= 4{ (n—1)(n +n )_a; r/ 2 Z hii*hi®
+a1(hs — Zhu‘xﬁz‘z‘w)}
x,?
n?+2n—Dar —r/2—h —
:4{( n)_lz / 2 Zhiimhiiw—l—alhg}.

Accordingly we have
2 —
T(G) z 4a1h2 -+ E_—2{2(T'L2 + 2n — 2)0,1 -Tr — 2h2} Z hz‘z‘xhﬁw
4 -
z 4(11 hg + m{(nz + 2n — 2)(11 — n(n + 1)(10} Z hszh“a:7

where the second inequality is derived by (6.9). Suppose that the con-
stant (n? -+ 2n — 2)a; — n(n + 1)ap = 0. Then we have

(6.11) T(6) = dayhs.



272 Jung-Hwan Kwon and Jin Suk Pak

By the way if (n2 + 2n — 2)a; — n(n + Dag < 0, then we have

4
n—2

(6.12) 7(6)

b

{(n=1)(n+4)a; —n(n+ 1)ag}hg.

Finally, we estimate 7(7). The matrix (h;?) is a positive semi-

definite Hermitian one, whose eigenvalues A;’s are non-negative real
functions, i.e., ;32 = X;8;;. So 7T(7) is estimated as follows ;

- 4Zkakh— = 42,\ L

a]a

=4Z>‘j( JJJJ+ Z R/Jkk

k(#7)

>4Z)‘{ n—l—n4za;—-r/2—h2+z }

k(5)

by virtue of (x1) and (6.10). Thus we have
1
(6.13) T(7) 2 (” ) =2 {2(n — 1)ay — nao}ha.

By using the above inequalities, we can prove the following proposi-
tion,

PROPOSITION 6.2. Let M’ be an (n + p)-dimensional locally sym-
metric Kaehler manifold satisfying the condition (%) and let M be an
n(2 3)-dimensional complete complex submanifold of M. If the normal
connection of M is proper, then the following statements hold good :

(1) If (n® + 2n — 2)a; — n(n + 1)ag = 0 and A; > 0, then there exists
a positive constant h in such a way that M is totally geodesic,
provided hy < h.

(2) If (n* + 2n — 2)a; — n(n + 1)ag £ 0 and As > 0, then there exists
a positive constant h in such a way that M is totally geodesic,
provided hs < h. '

Here,

A = —2n(n + Dag +2(2n? +n — 4)a; — (n — 2)(n + 4)as,
Ay = —dn(n+1)ag 4+ 6(n — 1)(n + 2)a; — (n — 2)(n + 4)as.
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Proof. We first prove the assertion (2) holds good. Since the ambi-
ent space is locally symmetric, by using (4.12), (6.3), (6.4), (6.12), and
(6.13), the equation (4.11) can be estimated as follows ;

Ahg ; — 8a2h2 + 8h4 - 8h22 — 2na2h2

+ =2 {0 = 1)(n + o —n(n+ Laokhy

+ fl%fzi){z(n — 1Day — nagthy — 4hy — 2Tr A*
and moreover
(6.14) Ahg 2 coho? + c1ho,

where we have put

2
n—2

2
co=—(4—-Tn), ¢ = As.
n

Now, let f be the non-negative function hy. Then, by (6.14), we have
(6.15) Af Zaf?+af = F(f),

where F is the polynomial of the variable f with the constant coefficients.
Since he < h, the scalar curvature r on M is also bounded from below
and hence Lemma 6.1 implies that the Ricci curvature of M is bounded
from below. From (6.9) we have r + 2f = 2n(n + 1)ag, which implies
that f is bounded from above. Thus we can apply Theorem O-Y to
the function f and obtain that F'(sup f) < 0, which gives sup f = 0 or
sup f 2 —%3; > (). Now we take a positive constant h in such a way that
h < —2 and hy < h. Then sup f S h < —2, and therefore sup f = 0.
Since the function f is non-negative, it vanishes identically on M, which
means that M is totally geodesic. The assertion (1) can be also proved
by the same argument as in the proof of the assertion (2). O

By means of Proposition 6.2, we can prove the main theorem stated
in Section 1.

Proof of the main theorem. In order to verify that the assumptions of
Proposition 6.2 are satisfied, we first investigate the sign of the constant
(n?+2n~2)a; —n(n+1)ag. We notice that it has the same sign as that of
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k— f(n), where f(n) = n(n—+1)/(n?+2n —2). But since f(n) = f(4) =
f(5) =10/11, we have k— f(n) £ k— f(4) = k—10/11. This means that
the condition &£ = 10/11 yields that the above constant is non-positive.
On the other hand we can also see that the sign of the constant As is the
same as that of k—g(n), where g(n) = 2n(n+1)/3{(n—1){(n+2)}. Since
g(n) is monotonically decreasing with respect to n and it satisfies g(3) =
4/5 and lim,_. g(n) = 2/3, we have 2/3 < g(n) £ 4/5 and hence the
constant A is positive if k > 4/5. Thus we can apply Proposition 6.2(2)
and complete the proof. O

In particular, we consider the case where the ambient space is a com-
plex space form of constant holomorphic sectional curvature ¢. Then
it is locally symmetric and it satisfies the condition (x) such that ag =
a1 = az = ¢/2. Furthermore, from (4.10), we have directly the following
inequality:

(6.16)
Af Zcof*+af=F(f), co = %(4— ™), a1 = (n+2)¢, ¢<0,
(6.17)

2
Af Zcof? + & = F(f), co==(4=Tn), & =ne, ¢>0.

By Lemma 6.1 the Ricci curvature of M is bounded from below, so is
the scalar curvature r on M. On the other hand, since r+2f is bounded
from above by (6.9), the function f is also bounded from above. Thus
by means of (6.17) and Theorem O-Y, we obtain F(sup f) < 0. Thus
we have

THEOREM 6.4. Let M’ be an (n+p)-dimensional complex space form
M™P(e), ¢ > 0. Let M be an n-dimensional complete complex subman-
ifold of M'. Then there exists a positive constant h in such a way that
M is totally geodesic, provided hy < h.

REMARK 6.2. When the ambient space is a complex space form of
constant holomorphic sectional curvature ¢ < 0,

(n® +2n—2ag —n(n+1)a; = (n—2)¢/2 <0, Ay =n(n—2)c/2<0

because of ag = a1 = a2 = ¢/2 < 0. But unfortunately we have no
information about the squared norm hs something like (6.16).
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