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COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES

Chong-Kyu Han and Giuseppe Tomassini

Abstract. Let M be a C∞ real hypersurface in Cn+1, n ≥ 1, locally
given as the zero locus of a C∞ real valued function r that is defined on
a neighborhood of the reference point P ∈ M. For each k = 1, . . . , n we
present a necessary and sufficient condition for there to exist a complex
manifold of dimension k through P that is contained in M, assuming
the Levi form has rank n − k at P. The problem is to find an integral
manifold of the real 1-form i∂r on M whose tangent bundle is invariant
under the complex structure tensor J . We present generalized versions
of the Frobenius theorem and make use of them to prove the existence of
complex submanifolds.

§ 1. Introduction

Let M be a real hypersurface in Cn+1, n ≥ 1, of class Ck, k ≥ 2. Locally
at a point P ∈ M , M divides Cn+1 in two connected components U±. Let
OP denote the ring of germs of holomorphic functions at P and O(U±) the
spaces of holomorphic functions in U±. We say that M has the local extension
property at P if there exists a fundamental system U = {Uν} , ν = 1, 2, . . . of
open neighbourhoods of P in Cn+1 such that

i) Uν \M has two connected components U+
ν , U−ν ;

ii) for one of U+
ν , U−ν holomorphic functions extend holomorphically through

P .
If the Levi-form of M has a non-zero eigenvalue at P and if M is of class

C3, then M has the extension property at P by the extension theorem due
to H. Lewy ([13], [1]). If M contains a germ at P of a complex hypersurface
{f = 0} it has not the extension property at P for 1/f is a holomorphic function
in U+

ν (also in U−ν ) that does not extend through P . By a theorem of Trépreau
[14] the converse is true, that is, M does not have the extension property if and
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only if there exists a complex hypersurface in M through P . As for the complex
manifolds of higher codimensions, although not much has been clarified yet, it
seems to the authors that the existence of complex submanifolds in M of higher
codimensions is the obstruction to the extendibility of the ∂̄-cohomology classes
and also various analytic objects that are defined in one of U±.

In this paper, we find necessary and sufficient conditions for M to contain
a germ at P of a complex submanifold of given a dimension. Suppose that r
is a local defining function of M , that is, r is a C∞ non-degenerate (dr 6= 0)
real-valued function defined on a neighborhood U of P so that M is locally the
zero locus of r. Then

θ :=
√−1∂r

is a real 1-form which defines a subbundle H(M) of the maximal complex
subspaces of TM and

dθ =
√−1∂̄r

is the Levi-form, as we shall discuss in §3. Then a submanifold N is a complex
submanifold of M if and only if N is an integral manifold of θ and the tangent
bundle TN is invariant under the complex structure tensor J of Cn+1 (Propo-
sition 3.5). Given a 1-form θ, the classical Pfaff problem is to determine its
integral manifolds of maximal dimension.

Definition 1. Let θ be a 1-form defined on a neighborhood U of a manifold
M . The integer k defined by

(dθ)k ∧ θ 6= 0, (dθ)k+1 ∧ θ = 0

is called the rank of θ.

Finding the integral manifolds is clarified by the normal form, given by the
following theorem whose proof is found in [2, Chapter 2]:

Theorem 2 (The Pfaff problem). Let θ be a 1-form of rank k defined on an
open neighborhood U of a manifold M of dimension m. Then there exists a
coordinate system y1, . . . , ym, possibly in a smaller neighborhood, such that

(1) θ = dy1 + y2dy3 + · · ·+ y2kdy2k+1.

Then the submanifolds given by y2j+1 = constant, j = 0, 1, . . . , k, are inte-
gral manifolds of (1). Thus we have:

Corollary 3. If θ has constant rank k, then there exists a (k + 1)-parameter
family of integral manifolds of dimension m−(k+1). Thus M is locally foliated
by integral manifolds of dimension m− (k + 1).

Notice that the case k = 0 is the Frobenius integrability. In our problem
this is the case that M is Levi-flat and foliated by complex hypersurfaces.
However, if θ has constant rank k ≥ 1, this normal form does not seem to
be immediately useful for the following reasons: we require integral manifolds
to be complex manifolds and also we want to know not only the foliation by
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complex submanifolds but also the existence of a single complex submanifold.
In order to find a complex submanifold of complex dimension n− k under the
condition that the Levi form has rank k, we make use of generalized versions
of the Frobenius theorem that we present in §2. For the sake of computational
convenience we use the ambient coordinates (z, w) := (z1, . . . , zn, w) of Cn+1

rather than working on the real hypersurface M . Our argument in this paper
is purely local: we work on a small neighborhood of a reference point and often
we need to shrink the neighborhood to a smaller open set as our argument
proceeds.

The authors express thanks to Alberto Saracco and Guy Roos for their
interest and for many valuable discussions. Recently, by using the methods as
in [5], N. Q. Dieu obtained results [6] on the existence of complex hypersurfaces
in real subvarieties defined by real homogeneous polynomials.

§ 2. Integral manifolds for Pfaffian systems

In this section we present a theory with an algorithm of finding integral
manifolds for the general case of Pfaffian system of several 1-forms. We adopt
the definitions and notations from the references [2] and [8]. Let M be a
C∞ real manifold of dimension m. A Pfaffian system is a system of C∞ real
1-forms that are linearly independent at every point of M :

θ := (θ1, . . . , θs).

Let p := m− s. A C∞ real submanifold N of dimension n, n ≤ p, is called an
integral manifold of the Pfaffian system θ if

i∗θα = 0, ∀α = 1, . . . , s,

where i : N ↪→M is the inclusion map. Let

Ω∗ :=
m⊕

k=0

Ωk

be the exterior algebra of C∞ differential forms of M , where Ωk is the set
of smooth k-forms and Ω0 := C∞(M) is the ring of smooth complex-valued
functions on M . Each Ωk is a module over C∞(M). A subalgebra I is called an
algebraic ideal if I∧Ω∗ ⊂ I and if the following additional condition is satisfied:
if φ =

∑m
k=0 φk ∈ I, where φk ∈ Ωk, each component φk ∈ I (homogeneity

condition).

For Ψ1,Ψ2 ∈ Ω∗ and an algebraic ideal I we write

Ψ1 ≡ Ψ2, mod I
if and only if Ψ1 −Ψ2 ∈ I. Real-valued functions ρ1, . . . , ρd shall be said to be
non-degenerate if

dρ1 ∧ · · · ∧ ρd 6= 0, mod (ρ1, . . . , ρd),
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where (ρ1, . . . , ρd) is the algebraic ideal generated by (ρ1, . . . , ρd). The common
zero locus of non-degenerate real functions is a smooth submanifold of M .

Now let I be the algebraic ideal generated by θ, which is the set of all finite
sums of the form

∑
θα ∧ φ, φ ∈ Ωk for some k. An algebraic ideal I is said to

be closed if
dI ⊂ I

Then the following are equivalent:
a) I is closed.
b) For each α = 1, . . . , s,

(2.1) dθα = 0, mod (θ1, . . . , θs).

A Pfaffian system θ = (θ1, . . . , θs) is said to be integrable (or involutive) if it
satisfies (2.1). Then the Frobenius theorem states as follows:

Theorem 2.1. Let M be a smooth manifold of dimension m and let θ =
(θ1, . . . , θs) be a system of smooth real 1-forms that are linearly independent
at every point of M. If θ satisfies the integrability condition (2.1), then for
any point x ∈ M there exists a unique integral manifold N of dimension p :=
m − s through x on a neighborhood of x. Therefore, M is locally foliated by
s-parameter family of integral manifolds.

Now we prove the following:

Theorem 2.2. Let Mm be a smooth manifold and let θ := (θ1, . . . , θs) be a
system of smooth real 1-forms that are linearly independent at every point of M .
Let n be an integer such that 2 ≤ n ≤ p := m− s. Suppose that i : Nn ↪→Mm

is a submanifold of dimension n, defined by ρ1 = · · · = ρm−n = 0, where ρ :=
(ρ1, . . . , ρm−n) are smooth nondegenerate real-valued functions of M . Then the
following are equivalent:

(i) i∗θα = 0, α = 1, . . . , s.
(ii) ∀α = 1, . . . , s, θα ≡ 0, mod (ρ1, . . . , ρm−n, dρ1, . . . , dρm−n).

It is easy to show the following:

Lemma 2.3. Let (t, x), where t = (t1, . . . , td), x = (x1, . . . , xn), be the standard
coordinates of Rd+n. Suppose that f is a C∞ function defined on a neighborhood
of the origin such that f(0, x) = 0. Then f(t, x) =

∑d
j=1 tjg

j(t, x) for some C∞

functions g1, . . . , gd defined on a smaller neighborhood of the origin.

Proof of Theorem 2.2. (i) ⇒ (ii): Choose independent 1-forms ω1, . . . , ωn so
that

dρ1, . . . , dρm−n, ω
1, . . . , ωn

span T ∗M. Then
i∗(ω1 ∧ · · · ∧ ωn) 6= 0.
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Set

(2.2) θα =
m−n∑

j=1

aαjdρj +
n∑

j=1

bαj ω
j .

Since i∗θα = 0 and i∗(dρj) = 0, pulling back (2.2) by i we have

0 =
n∑

j=1

bαj (i∗ωj).

Therefore, for each α, j, we have bαj = 0 on N. Then by Lemma 2.3 we have

(2.3) bαj =
m−n∑

k=1

hαk
j ρk

for some smooth function hαk
j . Substituting (2.3) for bαj in (2.2) we have

(2.4) θα =
m−n∑

j=1

aαjdρj +
n∑

j=1

m−n∑

k=1

ρkh
αk
j ωj .

(ii) ⇒ i): Suppose that

(2.5) θα =
m−n∑

j=1

ρjψ
αj +

m−n∑

j=1

hαjdρj

for some 1-forms ψαj and smooth functions hαj . Apply any tangent vector
(x, V ) ∈ TN to (2.5). Since ρj(x) = 0 and dρj(V ) = 0, we have θα(V ) = 0,
which implies that i∗θα = 0. ¤

Now we study by using Theorem 2.2, the existence of integral manifold
i : Nn ↪→Mm, 2 ≤ n ≤ p, of the Pfaffian system

(2.6) θα = 0, α = 1, . . . , s, s+ p = m.

Suppose that N is an integral manifold of (2.6). Then i∗θα = 0 implies that
d(i∗θα) = i∗(dθα) = 0. Let ω1, . . . , ωp be the complementary set of 1-forms.
We set as usual

(2.7) dθα =
p∑

i,j=1

Tα
ijω

i ∧ ωj , mod θ, α = 1, . . . , s,

where Tα
ji = −Tα

ij . Consider
(
p
2

)
:= p(p− 1)/2 linearly independent differential

2-forms ωi ∧ ωj arranged in lexico-graphical order. Let

(2.8) T = (Tα
ij)

be the matrix of size s × (
p
2

)
. We shall call T torsion of the Pfaffian system

(2.6).



1006 CHONG-KYU HAN AND GIUSEPPE TOMASSINI

Proposition 2.4. Let M be a smooth manifold of dimension m and let θ1, . . .,
θs, ω1, . . . , ωp be a system of smooth real 1-forms as in (2.6)-(2.7). Suppose
that N is an integral manifold of (2.6) of dimension n, 2 ≤ n ≤ p. Then there
exists

(
p
2

)×(
n
2

)
matrix valued smooth function A of rank

(
n
2

)
defined on N such

that

(2.9) T A = 0.

In particular, if Np is an integral manifold of maximal dimension, then T = 0
on Np.

Proof. After re-ordering if necessary, we may assume that ω1 ∧ · · · ∧ωn|N 6= 0.
Set

(2.10) ωλ|N =
n∑

i=1

aλ
i ω

i|N , λ = n+ 1, . . . , p.

Then the restriction to N of (2.7) becomes
(2.11)

0 =
∑
i<j

i,j=1,...,n

τα
ijω

i ∧ ωj , where

τα
ij = Tα

ij +
p∑

µ=n+1

Tα
iµa

µ
j −

p∑

λ=n+1

Tα
jλa

λ
i +

∑
λ<µ

λ,µ=n+1,...,p

Tα
λµ(aλ

i a
µ
j − aλ

j a
µ
i ),

α = 1, . . . , s. Since ωi ∧ ωj , i < j, are independent on N , (2.11) implies

(2.12) Tα
ij +

p∑
µ=n+1

Tα
iµa

µ
j −

p∑

λ=n+1

Tα
jλa

λ
i +

∑
λ<µ

λ,µ=n+1,...,p

Tα
λµ(aλ

i a
µ
j − aλ

j a
µ
i ) = 0

for each α = 1, . . . , s and each pair (ij) with i < j, i, j = 1, . . . , n. In matrices
we write (2.12) as

(2.13) T A = 0,

where A is a matrix of size
(
p
2

)× (
n
2

)
given as follows: for a pair I = (ij) with

i < j, i, j = 1, . . . , n, I-th column of A is

(· · · 1 · · · aµ
j · · · −aλ

i · · · aλ
i a

µ
j − aλ

j a
µ
i︸ ︷︷ ︸ · · · )

t

↑ ↑ ↑ ↑
(ij)th (iµ)th (jλ)th (λµ)th

for n < λ < µ, and dots are all zeros. Observe that the first
(
n
2

)
rows or A

is the identity matrix, therefore A is of maximal rank. In particular, if n = p
then A is the identity matrix of size

(
p
2

)
, therefore, T is identically zero on an

integral manifold of maximal dimension p. ¤

Observe that (2.13) is a system of
(
n
2

)
independent linear equations on the(

p
2

)
columns of T . Hence we have:
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Theorem 2.5. If N is an integral manifold of (2.6) of dimension n, 2 ≤ n ≤ p,
then the number of linearly independent columns of T is at most

(
p
2

)− (
n
2

)
.

Definition 2.6. Given a set of smooth functions Tα, α = 1, . . . , k on M a
smooth real-valued function ρ is said to be a common factor of Tα’s if Tα = ρφα,
for some smooth function φα for each α = 1, . . . , k.

Theorem 2.7. Let θ1, . . . , θs, ω1, . . . , ωp be real 1-forms of Mm, s + p = m,
as in (2.6)-(2.7). Let n, 2 ≤ n ≤ p, be an integer. Then there exists an integral
manifold N of (2.6) of dimension n if and only if there exists a non-degenerate
set of real-valued functions ρ = (ρ1, . . . , ρm−n) having the following properties:
on the common zero locus of ρ the first

(
n
2

)
columns (after rearrangement)

T1, . . . , T(n
2) belong to the linear span of Tλ, λ =

(
n
2

)
+ 1, . . . ,

(
p
2

)
, where Tλ is

the λ-th column of T , and

(2.14) θα = 0, mod (ρ, dρ).

Then N ; the common zero locus of ρ is an integral manifold of dimension n.

Generalization of the Frobenius theorem for the existence of a single integral
manifold of maximal dimension p is found in [16]. Our results [9], [10] and [11]
on the generalization of the Frobenius theorem are obtained independently
and comprises more general cases: existence of s′-parameter (s′ ≤ s) family
of integral manifolds of dimension p and existence of integral manifolds of
dimension p′ (p′ ≤ p).

§ 3. Existence of complex submanifolds in terms of derivatives of
the Levi-form

Let M be a smooth (C∞) real hypersurface in Cn+1, with coordinates (z, w),
where z = (z1, . . . , zn), defined on a neighborhood U of our reference point P.
Let M be defined by r(z, z̄, w, w̄) = 0, where r is a C∞ non-degenerate real-
valued function defined on an open subset U of M . We assume rw 6= 0. In this
section we discuss conditions for M to admit complex submanifolds through
P . Our strategy is to find a set of C∞ non-degenerate real-valued functions
ρ = (ρ1, . . . , ρd) that defines a submanifold N ⊂ M as in Theorem 2.2, where
ρ’s are obtained from the rank condition of the torsion tensor as in Theorem
2.7. In addition, we require the tangent bundle of N to be invariant under the
complex structure tensor J of Cn+1. For the common zero locus N of ρ the
following conditions are equivalent as we shall see in Theorem 3.5:

1) N is a complex manifold.
2) J(TN) ⊂ TN .
3) θ ≡ 0 and θν ≡ 0, ν = 1, . . . , d, modulo (r, ρ, dr, dρ), where θν :=√−1∂ρν .

In this section we adopt from [1] and [3] the standard definitions and nota-
tions of CR geometry. We first present a necessary and sufficient condition for
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a complex hypersurface to exist through P and then extend our argument to
the cases of complex submanifolds of higher codimensions.

Let

(3.1) θ =
√−1∂r.

Since dr = ∂r + ∂̄r = 0 on M we have θ̄ = −√−1∂̄r =
√−1∂r = θ, therefore,

θ is a real 1-form on M . Then

H(M) := {v ∈ T (M) : θ(v) = 0}
is the bundle of maximal complex subspaces of T (M). A real submanifold
N ⊂ M of dimension 2n is a complex submanifold if and only if N is an inte-
gral manifold of H(M) and TN is J-invariant. For the sake of computational
convenience we use the ambient coordinates (z, w) of Cn+1. Thus our prob-
lem is to find a J-invariant integral manifold of dimension 2n of the exterior
differential system

(3.2) (r, θ)

If N is an integral manifold of (3.2), then r|N = 0 and θ|N = 0, therefore,
dr|N = 0 and dθ|N = 0. Since θ = θ̄, mod (dr), and

1√−1
θ =

n∑

i=1

ridzi + rwdw

we have

(3.3)
dw = − 1

rw

∑
rjdzj , mod (dr, θ)

dw̄ = − 1
rw̄

∑
rj̄dz̄j , mod (dr, θ).

Since
1√−1

dθ = ∂̄∂r

=
n∑

i,j=1

{rij̄dz̄j ∧ dzi + riw̄dw̄ ∧ dzi + rwj̄dz̄j ∧ dw + rww̄dw̄ ∧ dw}

by substituting (3.3) for dw and for dw̄ we have

(3.4)
1√−1

dθ ≡
n∑

i,j=1

Tij̄dz̄j ∧ dzi, mod (dr, θ),

where

(3.5) Tij̄ = rij̄ − riw̄
rj̄
rw̄

− rwj̄

ri
rw

+ rww̄

rj̄
rw̄

ri
rw
.

We shall call the Hermitian matrix (Tij̄) the Levi matrix. This is the matrix
of the coefficients of the Levi form of M . If M is Levi flat, that is, if

Tij̄ ≡ 0, mod (r), ∀i, j = 1, . . . , n
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then by the Frobenius theorem M is foliated by complex hypersurfaces. The
functions Tij̄ , mod (r), are the obstruction to the existence of integral mani-
folds, which is generally called torsion for the exterior differential system (3.2).

Definition 3.1. A real valued function ρ defined on U is a factor of the Levi-
form (Tij̄) if Tij̄ ≡ 0, mod (r, ρ) for each i, j.

Our main observation is that if a complex hypersurface exits it is given as
the zero locus of a nondegenerate factor ρ of the Levi-form. A necessary and
sufficient condition for the existence of a complex hypersurface is that θ(v) = 0
for all vectors v ∈ TxCn+1 with r(x) = ρ(x) = 0, dr(v) = 0 and dρ(v) = 0,
which is a condition on the derivatives of r up to third order. We have:

Theorem 3.2. Let M be a real hypersurface in Cn+1, n ≥ 1, given as a
zero locus of a smooth real-valued function r with rw 6= 0 defined on a small
neighborhood U ⊂ Cn+1 of a point P ∈M. Let θ and Tij̄ be the same as defined
by (3.1) and (3.4). Then there exists a complex hypersurface N in M through
P if and only if there is a factor ρ of the Levi-form such that

i) ρ(P ) = 0, dr ∧ dρ 6= 0.
ii) θ ≡ 0, mod (r, ρ, dr, dρ).

Proof. Suppose that N is a complex hypersurface through P . Then

0 =
1√−1

dθ|N

=
n∑

i,j=1

(Tij̄ |N )dz̄j ∧ dzi.

Since dz̄j∧dzi are independent on N , we have Tij̄ |N = 0 for each i, j = 1, . . . , n.
Now choose any smooth real-valued function ρ on U such that N is the common
zero set of r and ρ and such that dρ∧dr 6= 0 on N . We take a local coordinate
system (r, ρ, x1, . . . , x2n) of Cn+1. Then Tij̄ ≡ 0, mod (r, ρ). Now ii) follows
from observing that the following are equivalent:

a) TxN = Hx(M), ∀x ∈ N.
b) For x ∈ N and for v ∈ TxN we have θ(v) = 0.
c) For v ∈ Tx(Cn+1) with r(x) = ρ(x) = 0, dr(v) = 0, dρ(v) = 0 we have

θ(v) = 0.
d) θ ≡ 0, mod (r, ρ, dr, dρ).
Conversely, suppose that ρ is a factor of the Levi-form with the properties i)

and ii). Let N be the common zero set of r and ρ. Then the property i) implies
that N , near P , is a smooth (2n)-dimensional submanifold of M containing P
and ii) implies that any tangent vector to N belongs to H(M), hence, N is a
complex hypersurface. ¤

Example 3.3. Quadric real hypersurfaces in C2: Let Q be the zero set of

r = w + w̄ + azz̄ + λzw̄ + λ̄wz̄ + bww̄,
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where a, b ∈ R, and λ ∈ C are constants.

We shall show that if Q contains a complex hypersurface through the origin,
then Q is Levi flat. We have

θ =
√−1{(az̄ + λw̄)dz + (1 + λ̄z̄ + bw̄)dw}

and
1√−1

dθ = ∂̄∂r

≡ Tdz̄ ∧ dz, mod (θ, dr),

where

T = a− λ
āz + λ̄w

1 + λz + b̄w
− λ̄

az̄ + λw̄

1 + λ̄z̄ + bw̄
+ b

āz + λ̄w

1 + λz + b̄w

az̄ + λw̄

1 + λ̄z̄ + bw̄
.

Let T be T multiplied by the common denominator:

T = a+ (ab− λλ̄)w + (ab− λλ̄)w̄ + (−λλ̄a+ ba2)zz̄

+ (−λλ̄2 + bλ̄a)z̄w + (−λ̄λ2 + baλ)zw̄ + (ab2 − λλ̄b)ww̄.

Therefore, in order for the origin to be a zero of T the coefficient a must be
zero and in that case Q contains the complex line w = 0. We have

r = w + w̄ + λzw̄ + λ̄wz̄ + bww̄

and
T = −λλ̄(w + w̄)− λλ̄2z̄w − λ̄λ2zw̄ − λλ̄bww̄.

Observe that
T = −λλ̄r ≡ 0, mod (r),

therefore Q is Levi flat.

Example 3.4. Cubic real hypersurfaces in C2 = {(z, w)}: Let z = x+ iy and
w = u+ iv. Consider the zero set M of

r = 2u(1 + 2y) + 8vx2

= (w + w̄)(1 +
z − z̄

i
) +

w − w̄

i
(z + z̄)2.

We shall show that M is not Levi flat and a complex line w = 0 is contained
in M . We have dr = 16xvdx+ 4udy + 2(1 + 2y)du+ 8x2dv and

θ = i∂r

= [w + w̄ + 2(w − w̄)(z + z̄)]dz + [i+ z − z̄ + (z + z̄)2]dw,

therefore,

dw = −w + w̄ + 2(w − w̄)(z + z̄)
i+ z − z̄ + (z + z̄)2

dz, mod θ,

dw̄ = −w + w̄ − 2(w − w̄)(z + z̄)
−i+ z̄ − z + (z + z̄)2

dz̄, mod θ.
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Then

dθ = i∂̄∂r

= [2(w − w̄)dz̄ + (1− 2(z + z̄))dw̄] ∧ dz + [−1 + 2(z + z̄)]dz̄ ∧ dw
(substituting the above for dw and dw̄)

= Tdz̄ ∧ dz,
where

T = 2(w − w̄)− (1− 2(z + z̄))
w + w̄ − 2(w − w̄)(z + z̄)
−i+ z̄ − z + (z + z̄)2

− (−1 + 2(z + z̄))
w + w̄ + 2(w − w̄)(z + z̄)
i+ z − z̄ + (z + z̄)2

= 4iv − (1−4x)
2u− 4vi · 2x
−i− 2yi+ 4x2

− (−1 + 4x)
2u+ 4vi · 2x
i+ 2yi+ 4x2

.

To see that M is not Levi flat consider a curve σ(x) = (x, 0,−4x3, x), which lies
on M and passes through the origin. Observe that T (σ(x)), after multiplying
by the product of the denominators, is a polynomial in x of degree 6 without
constant term, therefore, does not vanish identically. We also have

dT = ζ1(x, y, u, v)dx+ ζ2(x, y, u, v)dy + adu+ (4i+ ζ)dv,

where ζj(x, y, 0, 0) = 0 for j = 1, 2 and ζ(0) = 0. The submanifold r = T = 0
is the complex line w = 0, along which we have

dT = adu+ (4i+ ζ)dv,

dr = 2(1 + 2y)du+ 8x2dv,

and
θ = (i+ z − z̄ + (z + z̄)2)dw

= (i+ 2iy + 4x2)(du+ idv).

Thus we have
θ ≡ 0, mod (r, T, dr, dT ).

Now we discuss the cases of complex submanifolds of higher codimensions.
First of all, we prove the following:

Theorem 3.5. Suppose that N is a real submanifold of real dimension 2k in
Cm, 1 ≤ k ≤ m − 1, and that N is locally given as the common zero set of
non-degenerate real-valued functions ρ := (ρ1, . . . , ρ2d), d + k = m. Then the
following are equivalent:

a) N is a complex submanifold of Cm.
b) N is J-invariant, that is, J(TN) ⊂ TN.
c) ∂ρj ≡ 0, mod (ρ, dρ) for each j = 1, . . . , 2d, or equivalently,

θj ≡ 0, mod (ρ, dρ), where θj :=
√−1∂ρj .
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Proof. a) ⇐⇒ b): We may assume N is the graph

zk+λ = fλ(z1, . . . , zk), λ = 1, . . . , d,

where fλ are complex-valued functions. Then ii) is equivalent to that each fλ

satisfies the Cauchy-Riemann equations, so that fλ are holomorphic.
b) =⇒ c): Recall that dρj = ∂ρj + ∂̄ρj for j = 1, . . . , 2d. Recall also that for

any tangent vector v of Cm v −√−1Jv is a complex vector of type (1,0) and
v +

√−1Jv is a complex vector of type (0,1), so that

(3.6) ∂ρj(v +
√−1Jv) = 0

and

(3.7) ∂ρj(v −
√−1Jv) = dρj(v −

√−1Jv).

Now suppose that N is J-invariant. Then for any tangent vector v to N at
x ∈ N we have Jv ∈ TxN , so that dρj(Jv) = 0. Therefore, by (3.7) and (3.6)
we have for each j = 1, . . . , 2d

(3.8)
∂ρj(v −

√−1Jv) = dρj(v −
√−1Jv) = 0,

∂ρj(v +
√−1Jv) = 0.

(3.8) implies that
∂ρj ∈ (TCN)⊥ ⊂ (ρ, dρ),

where (ρ, dρ) denotes the algebraic ideal generated by ρ1, . . . , ρd, dρ1, . . . , dρ2d.
c) =⇒ b): Suppose that ∂ρj ∈ (ρ, dρ) for each j = 1, . . . , d. Then

(3.9) ∂ρj =
2d∑

α=1

(ραφ
α + aαdρα)

for some smooth 1-forms φα and functions aα. For any v ∈ TxN applying (3.9)
to the complex vectors (v −√−1Jv) and (v +

√−1Jv), respectively, we have

(3.10)

∂ρj(v −
√−1Jv) =

2d∑
α=1

aα(x)dρα(v −√−1Jv)

=
2d∑

α=1

aα(x)(−√−1)dρα(Jv)

and

(3.11)

0 = ∂ρj(v +
√−1Jv) =

2d∑
α=1

aα(x)dρα(v +
√−1Jv)

=
2d∑

α=1

aα(x)
√−1dρα(Jv).

But the LHS of (3.10) is equal to

dρj(v −
√−1Jv) = −√−1dρj(Jv).
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Hence, (3.10) becomes

(3.12)
√−1dρj(Jv) =

2d∑
α=1

aα(x)
√−1dρα(Jv).

Subtract (3.11) from (3.12), to obtain

dρj(Jv) = 0, j = 1, . . . , 2d,

which implies Jv ∈ TxN. ¤

Now we find defining functions ρ of a complex submanifold N of a real
hypersurface M in Cn+1. We shall modify the method of Theorem 2.7 to be
suitable to the ambient complex structure. At the reference point P we assume

(3.13) rank [Tij̄ ] = n− k, 1 ≤ k ≤ n.

Suppose thatN2k is a complex submanifold of complex dimension k, through
P. Then the rank condition implies that there is no other complex manifold
through P that is transversal to N. The Levi-form restricted to N is zero, that
is,

dθ(L, L̄) :=
√−1

n∑

i,j=1

Tij̄aiāj = 0

if and only if the complex vector L = (a1, . . . , an, b) ∈ Cn+1 is tangent to N .
Therefore, at P the null space of the Levi form is of complex dimension k.

Let τ1, . . . , τm be the determinant of the square submatrices of [Tij̄ ] of size
n− k+ 1. Then each τj is a polynomial in Tij̄ of degree n− k+ 1. Then (3.13)
is equivalent to

(3.14) τj |N = 0.

Thus a complex submanifold N is contained in the common zero locus of
τj , j = 1, . . . ,m. If N is defined as a common zero locus of real-valued func-
tions r, ρ1, . . . , ρd with dr ∧ dρ1 ∧ · · · ∧ dρd 6= 0, where d = 2n + 1 − 2k, then
each τj must be zero on the common zero locus of r, ρ1, . . . , ρd. This implies
τj ≡ 0, mod (r, ρ1, . . . , ρd). For each ρν , ν = 1, . . . , d, let θν =

√−1∂ρν . Then
by Theorem 3.5 the common zero set of r, ρ1, . . . , ρd is a complex manifold if
and only if θ ≡ 0, and θν ≡ 0, modulo (r, ρ1, . . . , ρd, dr, dρ1, . . . , dρd). Thus we
have the following:

Theorem 3.6. Let M be a real hypersurface in Cn+1, n ≥ 1, given as the
zero locus of a smooth real-valued function r with dr 6= 0 defined on a small
neighborhood U ⊂ Cn+1 of a point P ∈M. Let θ and Tij̄ be the same as defined
by (3.1) and (3.4). Suppose that [Tij̄ ] has rank n− k at P . Then there exists a
complex submanifold N of complex dimension k through P if and only if there
is a set of smooth real-valued functions ρ1, . . . , ρd, where d = 2n+1−2k, defined
on U such that

i) For each ν = 1, . . . , d, ρν(P ) = 0, and dr ∧ dρ1 ∧ · · · ∧ dρd 6= 0,
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ii) Each τj , j = 1, . . . ,m, of (3.14) is zero modulo (r, ρ1, . . . , ρd),
iii) θ ≡ 0 and θν ≡ 0 for each ν, modulo (r, ρ1, . . . , ρd, dr, dρ1, . . . , dρd).

Example 3.7. Complex curve through the origin in M5 ⊂ C3 = {(z1, z2, w)} :
Let M be the zero locus of

r = w + w̄ + az1z̄1 + λ(z1)2z̄2 + λ̄z2(z̄1)2,

where a is a real constant and λ is a nonzero complex constant.

In this example

T := [Tij̄ ] =
[

a 2λz1
2λ̄z̄1 0

]

so that detT = −4λλ̄z1z̄1, T has rank 2 if z1 6= 0.
Case a 6= 0 : If z1 = 0 the Levi matrix T has rank 1, in particular, T has
rank 1 at the origin. Thus we apply Theorem 3.6 with n = 2, k = 1 and
d = 2n + 1 − 2k = 3. We take ρ1 = =w, ρ2 = <z1, and ρ3 = =z1. Let N be
the set of common zeros of (r, ρν , ν = 1, 2, 3), which is a complex line (0, ζ, 0).
Then modulo (r, ρ1, ρ2, ρ3) we have

dr = dw + dw̄, θ =
√−1dw

dρ1 = 1
2
√−1

(dw − dw̄), θ1 = 1
2dw

dρ2 = 1
2 (dz1 + dz̄1), θ2 =

√−1
2 dz1

dρ3 = 1
2
√−1

(dz1 − dz̄1), θ3 = 1
2 (dz1).

We see that θ ≡ 0, and θν ≡ 0 for ν = 1, 2, 3,mod (r, ρ1, ρ2, ρ3, dr, dρ1, dρ2, dρ3).
Case a = 0 : If z1 = 0, then the Levi matrix T has rank 0, therefore, Theorem
3.6 is not applicable. T being of rank 0 is a necessary condition for there to
exist a complex 2-manifold. However, it does not imply the existence of complex
2-manifold. Through the origin there pass two complex curves transversally:
(0, ζ, 0) and (ζ, 0, 0), ζ ∈ C.
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