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COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES

CHONG-KYU HAN AND GIUSEPPE TOMASSINI

ABSTRACT. Let M be a C*® real hypersurface in C**t1, n > 1, locally
given as the zero locus of a C'*° real valued function r that is defined on
a neighborhood of the reference point P € M. For each k = 1,...,n we
present a necessary and sufficient condition for there to exist a complex
manifold of dimension k through P that is contained in M, assuming
the Levi form has rank n — k at P. The problem is to find an integral
manifold of the real 1-form ¢9r on M whose tangent bundle is invariant
under the complex structure tensor J. We present generalized versions
of the Frobenius theorem and make use of them to prove the existence of
complex submanifolds.

§ 1. Introduction

Let M be a real hypersurface in C**1', n > 1, of class C*, k > 2. Locally
at a point P € M, M divides C**! in two connected components U*. Let
Op denote the ring of germs of holomorphic functions at P and O(U?T) the
spaces of holomorphic functions in U%. We say that M has the local extension
property at P if there exists a fundamental system & = {U,}, v =1,2,... of
open neighbourhoods of P in C"*! such that

i) U, \ M has two connected components U,}, U, ;

ii) for one of U}, U holomorphic functions extend holomorphically through
P.

If the Levi-form of M has a non-zero eigenvalue at P and if M is of class
C3, then M has the extension property at P by the extension theorem due
to H. Lewy ([13], [1]). If M contains a germ at P of a complex hypersurface
{f = 0} it has not the extension property at P for 1/ f is a holomorphic function
in Ul (also in U, ) that does not extend through P. By a theorem of Trépreau
[14] the converse is true, that is, M does not have the extension property if and
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only if there exists a complex hypersurface in M through P. As for the complex
manifolds of higher codimensions, although not much has been clarified yet, it
seems to the authors that the existence of complex submanifolds in M of higher
codimensions is the obstruction to the extendibility of the d-cohomology classes
and also various analytic objects that are defined in one of U*.

In this paper, we find necessary and sufficient conditions for M to contain
a germ at P of a complex submanifold of given a dimension. Suppose that r
is a local defining function of M, that is, r is a C*° non-degenerate (dr # 0)
real-valued function defined on a neighborhood U of P so that M is locally the
zero locus of r. Then

6 :=/—10r

is a real 1-form which defines a subbundle H(M) of the maximal complex
subspaces of TM and
df =~/—10r

is the Levi-form, as we shall discuss in §3. Then a submanifold N is a complex
submanifold of M if and only if N is an integral manifold of # and the tangent
bundle T'N is invariant under the complex structure tensor .J of C**! (Propo-
sition 3.5). Given a 1-form 6, the classical Pfaff problem is to determine its
integral manifolds of maximal dimension.

Definition 1. Let 6 be a 1-form defined on a neighborhood U of a manifold
M. The integer k defined by

(dO)Ys A0 #0, (d)FTAO=0
is called the rank of 6.

Finding the integral manifolds is clarified by the normal form, given by the
following theorem whose proof is found in [2, Chapter 2]:

Theorem 2 (The Pfaff problem). Let 6 be a 1-form of rank k defined on an
open neighborhood U of a manifold M of dimension m. Then there exists a

coordinate system y', ..., y™, possibly in a smaller neighborhood, such that
(1) ezdyl +y2dy3 +~-'+y2kdy2k+l.
Then the submanifolds given by y2*! = constant, j = 0,1,...,k, are inte-

gral manifolds of (1). Thus we have:

Corollary 3. If 0 has constant rank k, then there exists a (k + 1)-parameter
family of integral manifolds of dimension m— (k+1). Thus M is locally foliated
by integral manifolds of dimension m — (k + 1).

Notice that the case & = 0 is the Frobenius integrability. In our problem
this is the case that M is Levi-flat and foliated by complex hypersurfaces.
However, if 6 has constant rank & > 1, this normal form does not seem to
be immediately useful for the following reasons: we require integral manifolds
to be complex manifolds and also we want to know not only the foliation by
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complex submanifolds but also the existence of a single complex submanifold.
In order to find a complex submanifold of complex dimension n — k under the
condition that the Levi form has rank %k, we make use of generalized versions
of the Frobenius theorem that we present in §2. For the sake of computational
convenience we use the ambient coordinates (z,w) := (21, ..., z,,w) of C"*!
rather than working on the real hypersurface M. Our argument in this paper
is purely local: we work on a small neighborhood of a reference point and often
we need to shrink the neighborhood to a smaller open set as our argument
proceeds.

The authors express thanks to Alberto Saracco and Guy Roos for their
interest and for many valuable discussions. Recently, by using the methods as
in [5], N. Q. Dieu obtained results [6] on the existence of complex hypersurfaces
in real subvarieties defined by real homogeneous polynomials.

§ 2. Integral manifolds for Pfaffian systems

In this section we present a theory with an algorithm of finding integral
manifolds for the general case of Pfaffian system of several 1-forms. We adopt
the definitions and notations from the references [2] and [8]. Let M be a
C® real manifold of dimension m. A Pfaffian system is a system of C'* real
1-forms that are linearly independent at every point of M:

0:=(0",...,60°).

Let p:=m — s. A C real submanifold N of dimension n, n < p, is called an
integral manifold of the Pfaffian system 6 if

"0 =0, Va=1,...,s,

where i : N < M is the inclusion map. Let

O* = é OF
k=0

be the exterior algebra of C™ differential forms of M, where QF is the set
of smooth k-forms and Q° := C°°(M) is the ring of smooth complex-valued
functions on M. Each QF is a module over C*°(M). A subalgebra Z is called an
algebraic ideal if ZAQ* C Z and if the following additional condition is satisfied:
if ¢ =Y or € Z, where ¢, € QOF each component ¢;, € Z (homogeneity
condition).

For ¥y, ¥, € Q* and an algebraic ideal Z we write
\1’1 = \IJQ, mod 7

if and only if U1 — Wy € 7. Real-valued functions p1, ..., pq shall be said to be
non-degenerate if

dpl/\"'/\pd%oa mOd(le-de)a
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where (p1,. .., pq) is the algebraic ideal generated by (p1, ..., pq). The common
zero locus of non-degenerate real functions is a smooth submanifold of M.

Now let Z be the algebraic ideal generated by 8, which is the set of all finite
sums of the form Y~ 6% A ¢, ¢ € QF for some k. An algebraic ideal Z is said to
be closed if

dIc1
Then the following are equivalent:
a) Z is closed.
b) For each o =1,...,s,
(2.1) do* =0, mod (0*,...,6°%).

A Pfaffian system 6 = (0%, ...,6°) is said to be integrable (or involutive) if it
satisfies (2.1). Then the Frobenius theorem states as follows:

Theorem 2.1. Let M be a smooth manifold of dimension m and let 0 =
(0Y,...,0°%) be a system of smooth real 1-forms that are linearly independent
at every point of M. If 0 satisfies the integrability condition (2.1), then for
any point x € M there exists a unique integral manifold N of dimension p :=
m — s through x on a neighborhood of x. Therefore, M is locally foliated by
s-parameter family of integral manifolds.

Now we prove the following:

Theorem 2.2. Let M™ be a smooth manifold and let 6 := (0',...,0°) be a
system of smooth real 1-forms that are linearly independent at every point of M .
Let n be an integer such that 2 < n < p:=m — s. Suppose that i : N* — M™
is a submanifold of dimension n, defined by p1 = -+ = ppm—n = 0, where p :=
(P1y- -y Pm—n) are smooth nondegenerate real-valued functions of M. Then the
following are equivalent:

(i) i*0* =0, a=1,...,s.

(ii) Va =1,...,s, 0* =0, mod (p1,- -, Pm-n,dP1;s- -, dPm—n)-

It is easy to show the following:

Lemma 2.3. Let (t,x), wheret = (t1,...,tq), ¢ = (z1,...,Ty), be the standard
coordinates of R4 . Suppose that f is a C™ function defined on a neighborhood
of the origin such that f(0,z) = 0. Then f(t,z) = Z?Zl tig(t,x) for some C>°

functions g*, ..., g% defined on a smaller neighborhood of the origin.
Proof of Theorem 2.2. (i) = (ii): Choose independent 1-forms w!,... w" so
that

dp17 s 7dpm—na°-)17~ e awn

span T*M. Then
(WA AW™) £ 0.
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Set
m—n ) n )
(2.2) 0= adp;+ Y b
j=1 j=1

Since i*0* = 0 and i*(dp;) = 0, pulling back (2.2) by i we have

0=> b(i*w).
j=1

Therefore, for each a, j, we have b5 = 0 on N. Then by Lemma 2.3 we have

m—n

(2.3) b= > h$*py
k=1

for some smooth function h$*. Substituting (2.3) for b in (2.2) we have

(2.4) 0= a¥dp;+Y Y pph§tul.
j=1 j=1 k=1
(ii) = i): Suppose that
(25) 6% = o™ + Y hdp;
j=1 j=1

for some 1-forms 1® and smooth functions h®. Apply any tangent vector
(x,V) € TN to (2.5). Since pj(z) = 0 and dp;(V) = 0, we have §%(V) = 0,
which implies that i*0¢ = 0. ]

Now we study by using Theorem 2.2, the existence of integral manifold
i: N™"— M™ 2 <n<p,of the Pfaffian system

(26) oa:O, OLZI,...,S, S+p=m.

Suppose that N is an integral manifold of (2.6). Then ¢*§% = 0 implies that
d(i*0%) = i*(d#*) = 0. Let w?,...,wP be the complementary set of 1-forms.
We set as usual

P
(2.7) dﬁo‘:Zﬂ‘;{wi/\wj, mod 0, a=1,...,s,

i,j=1

where T].OZ‘. = —TZ_OJ%, Consider (12)) = p(p — 1)/2 linearly independent differential

2-forms w’ A w’ arranged in lexico-graphical order. Let
(2.8) T = (T33)

be the matrix of size s x (127) We shall call 7 torsion of the Pfaffian system
(2.6).
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Proposition 2.4. Let M be a smooth manifold of dimension m and let 01, ...,
0%, wl, ... ,wP be a system of smooth real 1-forms as in (2.6)-(2.7). Suppose
that N is an integral manifold of (2.6) of dimension n, 2 < n < p. Then there
exists (5)x (%) matriz valued smooth function A of rank (%) defined on N such
that

(2.9) TA=0.

In particular, if NP is an integral manifold of maximal dimension, then T =0
on NP.

Proof. After re-ordering if necessary, we may assume that w! A--- Aw™|y # 0.
Set

(2.10) w’\|N:Za;\wih\f7 A=n+1,...,p.
i=1

Then the restriction to N of (2.7) becomes
(2.11)

0= E Tw' Aw’,  where

i,j=1,-..,n
P P
A A A
=T+ Y Taa - 3 Thel+ ) Tiu(ae) —ajal),
p=n-+1 A=n+1 A<p
A p=n+1,..., P

a=1,...,s. Since w’ Aw’, i < j, are independent on N, (2.11) implies

P P

A A A
1) T Y T 3 Thad e Y T - @) 0
p=n-+1 A=n+1 A<p
Ap=n+1,..., p

for each o = 1,...,s and each pair (ij) with i < j, 4,5 = 1,...,n. In matrices
we write (2.12) as
(2.13) TA=0,

where A is a matrix of size (’2’) X (g) given as follows: for a pair I = (ij) with

i1<7j,4,5=1,...,n, I-th column of A is

(.-. 1.-. a‘;]%-.- —a?-.. a/?a?—a;ai’b. )t
—_————
1 T T T
)" ()™ (At (Ap)th

for n < A < p, and dots are all zeros. Observe that the first (%) rows or A
is the identity matrix, therefore A is of maximal rank. In particular, if n = p
then A is the identity matrix of size (’2’), therefore, 7 is identically zero on an
integral manifold of maximal dimension p. O

Observe that (2.13) is a system of (g) independent linear equations on the
(’2’) columns of 7. Hence we have:
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Theorem 2.5. If N is an integral manifold of (2.6) of dimensionn, 2 <n < p,

then the number of linearly independent columns of T is at most (12’) - (g)

Definition 2.6. Given a set of smooth functions T,, = 1,...,k on M a
smooth real-valued function p is said to be a common factor of T}, ’s if T,, = p¢.,
for some smooth function ¢, for each o =1,... k.

Theorem 2.7. Let 0',...,0% w',...,wP be real 1-forms of M™, s +p = m,
as in (2.6)-(2.7). Letn, 2 < n < p, be an integer. Then there exists an integral
manifold N of (2.6) of dimension n if and only if there exists a non-degenerate
set of real-valued functions p = (p1,..., Pm—n) having the following properties:
on the common zero locus of p the first (g) columns (after rearrangement)
Tl,...,’T(;) belong to the linear span of Ty, \ = (g) +1,..., (’2’), where Ty 1s
the A-th column of T, and

(2.14) 0% =0, mod (p,dp).
Then N; the common zero locus of p is an integral manifold of dimension n.

Generalization of the Frobenius theorem for the existence of a single integral
manifold of maximal dimension p is found in [16]. Our results [9], [10] and [11]
on the generalization of the Frobenius theorem are obtained independently
and comprises more general cases: existence of s’-parameter (s’ < s) family
of integral manifolds of dimension p and existence of integral manifolds of
dimension p’ (p’ < p).

§ 3. Existence of complex submanifolds in terms of derivatives of
the Levi-form

Let M be a smooth (C*) real hypersurface in C"*!, with coordinates (z,w),
where z = (21, ..., 2), defined on a neighborhood U of our reference point P.
Let M be defined by r(z,z, w,w) = 0, where r is a C* non-degenerate real-
valued function defined on an open subset U of M. We assume r,, # 0. In this
section we discuss conditions for M to admit complex submanifolds through
P. Our strategy is to find a set of C°° non-degenerate real-valued functions
p = (p1,-..,pq) that defines a submanifold N C M as in Theorem 2.2, where
p’s are obtained from the rank condition of the torsion tensor as in Theorem
2.7. In addition, we require the tangent bundle of N to be invariant under the
complex structure tensor J of C"*!. For the common zero locus N of p the
following conditions are equivalent as we shall see in Theorem 3.5:

1) N is a complex manifold.

2) J(I'N)CTN.

3) =0 and 0¥ =0, v = 1,...,d, modulo (r,p,dr,dp), where 6" :=
\/jlapu-

In this section we adopt from [1] and [3] the standard definitions and nota-
tions of CR geometry. We first present a necessary and sufficient condition for
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a complex hypersurface to exist through P and then extend our argument to
the cases of complex submanifolds of higher codimensions.
Let

(3.1) 0 =+—10r.
Since dr = Or + Or = 0 on M we have § = —/—10r = \/—10r = 6, therefore,
0 is a real 1-form on M. Then

H(M):={veT(M):0(v)=0}

is the bundle of maximal complex subspaces of T(M). A real submanifold
N C M of dimension 2n is a complex submanifold if and only if N is an inte-
gral manifold of H(M) and TN is J-invariant. For the sake of computational
convenience we use the ambient coordinates (z,w) of C**. Thus our prob-
lem is to find a J-invariant integral manifold of dimension 2n of the exterior
differential system

(3.2) (r, 9)

If N is an integral manifold of (3.2), then r[x = 0 and 6|y = 0, therefore,
dr|y =0 and df|ny = 0. Since 6 = 0, mod (dr), and

1 n
—0 = ridz; + rydw

we have
1

dw=—— erdzj, mod (dr, 0)
(3.3) ’"{“

diw = . Zr;dzj, mod (dr,0).
Since

1 _
——df = 90r

V1
= Z {ri;dz; Ndz; + rigdw A dz; +1,5dZ; A dw + ryedo A dw}
ij=1

by substituting (3.3) for dw and for dw we have

1 n
(3-4) ——df = Y Tj;dz; Adz,  mod (dr,0),
el i,j=1
where
5 Ti r:or;

We shall call the Hermitian matrix (7};) the Levi matrix. This is the matrix
of the coefficients of the Levi form of M. If M is Levi flat, that is, if

T;;=0, mod (r), Vi,j=1,...,n



COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES 1009

then by the Frobenius theorem M is foliated by complex hypersurfaces. The
functions T3, mod (r), are the obstruction to the existence of integral mani-
folds, which is generally called torsion for the exterior differential system (3.2).
Definition 3.1. A real valued function p defined on U is a factor of the Levi-

form (T;) if T;; = 0, mod (r, p) for each i, j.

Our main observation is that if a complex hypersurface exits it is given as
the zero locus of a nondegenerate factor p of the Levi-form. A necessary and
sufficient condition for the existence of a complex hypersurface is that 8(v) =0
for all vectors v € T,C"*! with r(z) = p(z) = 0, dr(v) = 0 and dp(v) = 0,
which is a condition on the derivatives of r up to third order. We have:

Theorem 3.2. Let M be a real hypersurface in C*t', n > 1, given as a
zero locus of a smooth real-valued function r with r, # 0 defined on a small
neighborhood U C C"*! of a point P € M. Let § and T;; be the same as defined
by (3.1) and (3.4). Then there exists a complex hypersurface N in M through
P if and only if there is a factor p of the Levi-form such that

i) p(P)=0, drAdp#0.

ii) # =0, mod (r,p,dr,dp).

Proof. Suppose that N is a complex hypersurface through P. Then
1

0 dé
v
> (Tijln)dz; A dzi.
i,j=1
Since dz; Adz; are independent on N, we have T;;|y = 0 for eachd,j = 1,...,n.

Now choose any smooth real-valued function p on U such that N is the common
zero set of r and p and such that dp Adr # 0 on N. We take a local coordinate
system (r,p, 1, ...,@2,) of C*"*1. Then Tj; = 0, mod (r,p). Now ii) follows
from observing that the following are equivalent:

a) T,N = H,(M), Vxe&N.

b) For € N and for v € T, N we have 6(v) = 0.

¢) For v € T,(C"*1) with r(z) = p(z) = 0,dr(v) = 0, dp(v) = 0 we have
6(v) = 0.

d) 0 =0, mod (r, p,dr,dp).

Conversely, suppose that p is a factor of the Levi-form with the properties i)
and ii). Let N be the common zero set of r and p. Then the property i) implies
that N, near P, is a smooth (2n)-dimensional submanifold of M containing P
and ii) implies that any tangent vector to N belongs to H(M), hence, N is a
complex hypersurface. [l

Example 3.3. Quadric real hypersurfaces in C?: Let Q be the zero set of

=W+ W+ azZ + A\2W + Mwz + bww,
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where a,b € R, and A € C are constants.

We shall show that if ) contains a complex hypersurface through the origin,
then @ is Levi flat. We have

0 = vV—1{(az + \w)dz + (1 + Xz + bw)dw}

and 1
——df =00
/1 "
=TdzANdz, mod (0,dr),
where
I az 4+ Aw 5 az + \w az + Aw azZ + A\w

T+ Xz+bw " 1+Az+bw 1+Az+bwl+Az+bw
Let 7 be T multiplied by the common denominator:
T = a+ (ab— A\)w + (ab — M)W + (=A\a + ba?) 2z
+ (=AM 4 ba)zw + (AN + ba))zw + (ab® — A\b)ww.
Therefore, in order for the origin to be a zero of 7 the coefficient @ must be
zero and in that case () contains the complex line w = 0. We have
r=w+ W+ A2 + Mwz + bww
and
T = - M\(w + 1) — A?z2w — AN 20 — A\bw.
Observe that
T =-Xr=0, mod (r),
therefore @) is Levi flat.
Example 3.4. Cubic real hypersurfaces in C?> = {(z,w)}: Let z = x + iy and
w = u + t. Consider the zero set M of
r = 2u(l+ 2y) + Svx?

zZ—Zz w—w

)+ ——(+2)"

= (w+w)(1+ ;

We shall show that M is not Levi flat and a complex line w = 0 is contained
in M. We have dr = 16xvdz + 4udy + 2(1 + 2y)du + 8z%dv and
0 =ior
=[w+w+2w—w)(z+2)]dz + [i + 2 — Z+ (2 + 2)?]dw,

therefore,
dw = _w—&.-w+2(7w—w)(zi+z)dz’ mod 6,
i+z—z4+(z+2)?
Cw+w—2(w—w)(z+2)
—i+z—z+4+ (24 2)?

dw = dz, mod 6.
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Then
df = i0or
=[2(w—w)dz+ (1 = 2(z + 2))dw] Ndz + [-1 + 2(z + 2)|dz A dw
(substituting the above for dw and dw)
=Tdz N dz,
where

5 9w — @ _
T:Q(w—w)—(l—Q(erE))w—i_,w, (w w)(zi—kz)
—i+z—z4+(2+2)?

w0+ 2(w—w)(z+ 2)
i+tz—z4+(z+2)?

2-u—41.)z'~2x _(_1+4x).2u+4.m'~2x.

—i — 2yi + 422 1+ 2yi + 42

—(=1+2(z+2)
= 4iv — (1—4z)

To see that M is not Levi flat consider a curve o(z) = (x,0, —4x3, z), which lies
on M and passes through the origin. Observe that T'(o(x)), after multiplying
by the product of the denominators, is a polynomial in = of degree 6 without
constant term, therefore, does not vanish identically. We also have

dT = (i (z, y, u,v)dx + (2, y, u, v)dy + adu + (4i + ¢)dv,
where (;(z,9,0,0) =0 for j = 1,2 and ¢(0) = 0. The submanifold r =T =0
is the complex line w = 0, along which we have
dT = adu + (41 + ¢)dv,
dr = 2(1 + 2y)du + 8z%dv,
and
0= (i+2z—2+(z+2)?)dw
= (i + 2iy + 42*)(du + idv).
Thus we have
6=0, mod (r,T,dr,dT).
Now we discuss the cases of complex submanifolds of higher codimensions.

First of all, we prove the following:

Theorem 3.5. Suppose that N is a real submanifold of real dimension 2k in
Cm™, 1< k<m-—1, and that N is locally given as the common zero set of
non-degenerate real-valued functions p := (p1,...,p24), d + k = m. Then the
following are equivalent:

a) N is a complex submanifold of C™.

b) N is J-invariant, that is, J(TN) C TN.

c) dp; =0, mod (p,dp) for each j =1,...,2d, or equivalently,

07 =0, mod (p,dp), where ¢’ :=/—109p;.
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Proof. a) <= b): We may assume N is the graph
Zk+)\:f)\(2’1,...,zk), )\Zl,...,d,

where f) are complex-valued functions. Then ii) is equivalent to that each fy
satisfies the Cauchy-Riemann equations, so that f are holomorphic.

b) = ¢): Recall that dp; = dp; +dp; for j =1,...,2d. Recall also that for
any tangent vector v of C™ v — /—1Jv is a complex vector of type (1,0) and
v ++/—1Jv is a complex vector of type (0,1), so that

(3.6) dpj(v+v~=1Jv) =0
and
(3.7) dp;(v — V=1Jv) = dp;(v — V—1Jv).

Now suppose that N is J-invariant. Then for any tangent vector v to N at
x € N we have Jv € T, N, so that dp;(Jv) = 0. Therefore, by (3.7) and (3.6)
we have for each j =1,...,2d
(3.8) Opj(v —v—1Jv) =dp;j(v — vV—-1Jv) =0,
' opj(v+v—1Jv) = 0.
(3.8) implies that
dp; € (TeN)* C (p, dp),
where (p, dp) denotes the algebraic ideal generated by p1, ..., p4,dp1,. .., dp2q.
c) = b): Suppose that dp; € (p,dp) for each j =1,...,d. Then

2d
(3.9) Opj = _(pad™ + a®dps)

a=1
for some smooth 1-forms ¢® and functions a®. For any v € T,,N applying (3.9)
to the complex vectors (v —+/—1Jv) and (v + /—1Jv), respectively, we have

8pj(v—\/j1Jv Za x)dpa( U—FJ’U)

(3.10)
= Z a® dpa(JU)
and
0=0p;(v+vV—1Jv) = Za (z)dpa (v + V—1Jv)
(3.11)

- Z a®(2)v/—1dpa(Jv).

But the LHS of (3.10) is equal to
dp;(v — vV—=1Jv) = —v—1dp;(Jv).
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Hence, (3.10) becomes
2d

(3.12) V—=1dp;(Jv) = Z a®(x)V/—1dpa(Jv).

a=1
Subtract (3.11) from (3.12), to obtain
dpj(Jv) =0, j=1,...,2d,
which implies Jv € T, N. O

Now we find defining functions p of a complex submanifold N of a real
hypersurface M in C**!. We shall modify the method of Theorem 2.7 to be
suitable to the ambient complex structure. At the reference point P we assume

(3.13) rank [T;;] =n—k, 1<k<n.

Suppose that N2* is a complex submanifold of complex dimension k, through
P. Then the rank condition implies that there is no other complex manifold
through P that is transversal to N. The Levi-form restricted to N is zero, that
is,

(L, L) := V=1 Tja;a; =0

i,j=1
if and only if the complex vector L = (aq,...,a,,b) € C"*! is tangent to N.
Therefore, at P the null space of the Levi form is of complex dimension k.
Let 71,...,Tm be the determinant of the square submatrices of [T};] of size

n—k+ 1. Then each 7; is a polynomial in 7}; of degree n — k + 1. Then (3.13)
is equivalent to

(3.14) 7i|n = 0.

Thus a complex submanifold N is contained in the common zero locus of
7j,J = 1,...,m. If N is defined as a common zero locus of real-valued func-
tions 7, p1,...,pq With dr Adpy A -+ ANdpg # 0, where d = 2n + 1 — 2k, then
each 7; must be zero on the common zero locus of r, p1, ..., pq. This implies
7; =0, mod (r, p1,...,pa). For each p,, v =1,...,d, let ¥ = /—19p,. Then
by Theorem 3.5 the common zero set of 7, p1,...,pq is a complex manifold if

and only if # = 0, and ¥ = 0, modulo (r, p1, ..., pa,dr,dp1,...,dpg). Thus we
have the following:

Theorem 3.6. Let M be a real hypersurface in C"T1, n > 1, given as the
zero locus of a smooth real-valued function r with dr # 0 defined on a small
neighborhood U C C"*! of a point P € M. Let § and T;; be the same as defined
by (3.1) and (3.4). Suppose that [T;;] has rank n —k at P. Then there exists a
complex submanifold N of complex dimension k through P if and only if there
is a set of smooth real-valued functions p1, ..., pq, where d = 2n+1—2k, defined
on U such that
i) For eachv=1,...,d, p,(P)=0, and dr ANdp1 N--- Ndpg # 0,
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ii) Fach 75,7 =1,...,m, of (3.14) is zero modulo (7, p1,...,pd),
iii) # =0 and 0¥ = 0 for each v, modulo (v, p1,...,pda,dr,dp1,...,dpg).

Example 3.7. Complex curve through the origin in M® C C? = {(21, 2o, w)} :
Let M be the zero locus of

r=w-+w-+az1z1 + )\(2’1)222 + 5\22(21)2,
where a is a real constant and ) is a nonzero complex constant.

In this example
ot a 221

so that det T' = —4X\z1Z;, T has rank 2 if z; # 0.

Case a # 0 : If z; = 0 the Levi matrix T has rank 1, in particular, 7' has
rank 1 at the origin. Thus we apply Theorem 3.6 with n = 2, £k = 1 and
d=2n+1-2k = 3. We take p; = Qw, ps = Rz1, and p3 = Jz1. Let N be
the set of common zeros of (r, p,,v = 1,2,3), which is a complex line (0, ¢, 0).
Then modulo (r, p1, p2, p3) we have

dr = dw + dw, 0 =+v—1dw
dpy = ﬁ(dw —dw), 0= idw

dps = L(doy +dz1), 62 = ldz
dp3 = 72\/j1(d21 — dzl), 93 = %(dzl)
We see that = 0, and 0¥ = 0 for v = 1,2, 3, mod (r, p1, p2, p3,dr,dp1, dpa, dps).

Case a = 0: If z; =0, then the Levi matrix 7" has rank 0, therefore, Theorem
3.6 is not applicable. T being of rank 0 is a necessary condition for there to
exist a complex 2-manifold. However, it does not imply the existence of complex
2-manifold. Through the origin there pass two complex curves transversally:
(0,¢,0) and (¢,0,0), ¢ € C.
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