• 제목/요약/키워드: complex Euclidean space

검색결과 21건 처리시간 0.029초

On Curvature-Adapted and Proper Complex Equifocal Sub-manifolds

  • Koike, Naoyuki
    • Kyungpook Mathematical Journal
    • /
    • 제50권4호
    • /
    • pp.509-536
    • /
    • 2010
  • In this paper, we investigate curvature-adapted and proper complex equifocal submanifolds in a symmetric space of non-compact type. The class of these submanifolds contains principal orbits of Hermann type actions as homogeneous examples and is included by that of curvature-adapted and isoparametric submanifolds with flat section. First we introduce the notion of a focal point of non-Euclidean type on the ideal boundary for a submanifold in a Hadamard manifold and give the equivalent condition for a curvature-adapted and complex equifocal submanifold to be proper complex equifocal in terms of this notion. Next we show that the complex Coxeter group associated with a curvature-adapted and proper complex equifocal submanifold is the same type group as one associated with a principal orbit of a Hermann type action and evaluate from above the number of distinct principal curvatures of the submanifold.

EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

  • Chang, Kun-Soo;Chang, Joo-Sup
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.99-106
    • /
    • 1984
  • J. Yeh has recently introduced the concept of conditional Wiener integrals which are meant specifically the conditional expectation E$^{w}$ (Z vertical bar X) of a real or complex valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on the Wiener measure space (A precise definition of the conditional Wiener integral and a brief discussion of the Wiener measure space are given in Section 2). In [3] and [4] he derived some inversion formulae for conditional Wiener integrals and evaluated some conditional Wiener integrals E$^{w}$ (Z vertical bar X) conditioned by X(x)=x(t) for a fixed t>0 and x in Wiener space. Thus E$^{w}$ (Z vertical bar X) is a real or complex valued function on R$^{1}$. In this paper we shall be concerned with the random vector X given by X(x) = (x(s$_{1}$),..,x(s$_{n}$ )) for every x in Wiener space where 0=s$_{0}$ $_{1}$<..$_{n}$ =t. In Section 3 we will evaluate some conditional Wiener integrals E$^{w}$ (Z vertical bar X) which are real or complex valued functions on the n-dimensional Euclidean space R$^{n}$ . Thus we extend Yeh's results [4] for the random variable X given by X(x)=x(t) to the random vector X given by X(x)=(x(s$_{1}$).., x(s$_{n}$ )).

  • PDF

BOUNDARY BEHAVIOR OF HOLOMORPHIC DISCS IN CONVEX FINITE TYPE DOMAINS

  • Lee, Kang-Hyurk
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.351-356
    • /
    • 2015
  • In this paper, we study holomorphic discs in a domain with a plurisubharmonic peak function at a boundary point. The aim is to describe boundary behavior of holomorphic discs in convex finite type domains in the complex Euclidean space in term of a special local neigh-borhood system at a boundary point.

MINIMAL SURFACE SYSTEM IN EUCLIDEAN FOUR-SPACE

  • Hojoo Lee
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.71-90
    • /
    • 2023
  • We construct generalized Cauchy-Riemann equations of the first order for a pair of two ℝ-valued functions to deform a minimal graph in ℝ3 to the one parameter family of the two dimensional minimal graphs in ℝ4. We construct the two parameter family of minimal graphs in ℝ4, which include catenoids, helicoids, planes in ℝ3, and complex logarithmic graphs in ℂ2. We present higher codimensional generalizations of Scherk's periodic minimal surfaces.

EVALUATION OF SOME CONDITIONAL ABSTRACT WIENER INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.151-158
    • /
    • 1989
  • Let (H, B, .nu.) be an abstract Wiener space where H is a separable Hilbert space with the inner product <.,.> and the norm vertical bar . vertical bar=.root.<.,.>, which is densely and continuously imbedded into a separable Banach space B with the norm ∥.∥ , and .nu. is a probability measure on the Borel .sigma.-algebra B(B) of B which satisfies (Fig.) where $B^{*}$ is the topological dual of B and (.,.) is the natural dual pairing between B and $B^{*}$. We will regard $B^{*}$.contnd.H.contnd.B in the natural way. Thus we have =(y, x) for all y in $B^{*}$ and x in H. Let $R^{n}$ and C denote the n-dimensional Euclidean space and the complex numbers respectively.ctively.

  • PDF

CURVES ORTHOGONAL TO A VECTOR FIELD IN EUCLIDEAN SPACES

  • da Silva, Luiz C.B.;Ferreira, Gilson S. Jr.
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1485-1500
    • /
    • 2021
  • A curve is rectifying if it lies on a moving hyperplane orthogonal to its curvature vector. In this work, we extend the main result of [Chen 2017, Tamkang J. Math. 48, 209] to any space dimension: we prove that rectifying curves are geodesics on hypercones. We later use this association to characterize rectifying curves that are also slant helices in three-dimensional space as geodesics of circular cones. In addition, we consider curves that lie on a moving hyperplane normal to (i) one of the normal vector fields of the Frenet frame and to (ii) a rotation minimizing vector field along the curve. The former class is characterized in terms of the constancy of a certain vector field normal to the curve, while the latter contains spherical and plane curves. Finally, we establish a formal mapping between rectifying curves in an (m + 2)-dimensional space and spherical curves in an (m + 1)-dimensional space.

복잡계로서의 건축개념과 조형적 특성에 관한 연구(I) (The Architectural Concepts and Design Properties as a Complex System)

  • 김주미
    • 한국실내디자인학회논문집
    • /
    • 제22호
    • /
    • pp.123-131
    • /
    • 2000
  • The purpose of this study is to propose a new design concept and properties within new paradigm. Contemporary students of architectural design seem to redefine the mechanic and reductive approach to design method based upon Euclidean geometry. In this study, the organic space-time and holistic view-point that constitutes the background for all this is radically different from the modern design. It consists of three sections as follow: First, it presents a concept of complex system and properties of complexity that we find in new natural science and tries to combine that news geometry with architectural design to provide a methodological basis for morphogenesis and transformation. Second, the complexity in architecture is defined as a fractal shape, folded space, and irreducible organic system that cannot be fully understood by modernist idea of architecture. Third, the complexity in architecture is strategy based on the electronic paradigm that would enable the emergence of creative possibility. The complexity theory offer new insights to explain not only natural laws but also define dynamic architecture. In fine, this study places a great emphasis on the organic world-view to the spatial organization, which I hope will contribute to generating a greater number of creative possibilities for design.

  • PDF

A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

  • Yang, Jae-Hyun
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.781-794
    • /
    • 2008
  • Let $\mathbb{H}_g$ and $\mathbb{D}_g$ be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let $\mathbb{C}^{(h,g)}$ be the Euclidean space of all $h{\times}g$ complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ onto the Siegel-Jacobi space $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ which gives a partial bounded realization of $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ by $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. We prove that the natural actions of the Jacobi group on $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. and $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$. are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. invariant under the natural action of the Jacobi group $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ explicitly.

GEOMETRIC ANALYSIS ON THE DIEDERICH-FORNÆSS INDEX

  • Krantz, Steven George;Liu, Bingyuan;Peloso, Marco Maria
    • 대한수학회지
    • /
    • 제55권4호
    • /
    • pp.897-921
    • /
    • 2018
  • Given bounded pseudoconvex domains in 2-dimensional complex Euclidean space, we derive analytical and geometric conditions which guarantee the Diederich-$Forn{\ae}ss$ index is 1. The analytical condition is independent of strongly pseudoconvex points and extends $Forn{\ae}ss$-Herbig's theorem in 2007. The geometric condition reveals the index reflects topological properties of boundary. The proof uses an idea including differential equations and geometric analysis to find the optimal defining function. We also give a precise domain of which the Diederich-$Forn{\ae}ss$ index is 1. The index of this domain can not be verified by formerly known theorems.

COUNTING OF FLOWERS BASED ON K-MEANS CLUSTERING AND WATERSHED SEGMENTATION

  • PAN ZHAO;BYEONG-CHUN SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권2호
    • /
    • pp.146-159
    • /
    • 2023
  • This paper proposes a hybrid algorithm combining K-means clustering and watershed algorithms for flower segmentation and counting. We use the K-means clustering algorithm to obtain the main colors in a complex background according to the cluster centers and then take a color space transformation to extract pixel values for the hue, saturation, and value of flower color. Next, we apply the threshold segmentation technique to segment flowers precisely and obtain the binary image of flowers. Based on this, we take the Euclidean distance transformation to obtain the distance map and apply it to find the local maxima of the connected components. Afterward, the proposed algorithm adaptively determines a minimum distance between each peak and apply it to label connected components using the watershed segmentation with eight-connectivity. On a dataset of 30 images, the test results reveal that the proposed method is more efficient and precise for the counting of overlapped flowers ignoring the degree of overlap, number of overlap, and relatively irregular shape.