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Abstract. In this paper, we investigate curvature-adapted and proper complex equifocal

submanifolds in a symmetric space of non-compact type. The class of these submani-

folds contains principal orbits of Hermann type actions as homogeneous examples and is

included by that of curvature-adapted and isoparametric submanifolds with flat section.

First we introduce the notion of a focal point of non-Euclidean type on the ideal bound-

ary for a submanifold in a Hadamard manifold and give the equivalent condition for a

curvature-adapted and complex equifocal submanifold to be proper complex equifocal in

terms of this notion. Next we show that the complex Coxeter group associated with a

curvature-adapted and proper complex equifocal submanifold is the same type group as

one associated with a principal orbit of a Hermann type action and evaluate from above

the number of distinct principal curvatures of the submanifold.

1. Introduction

In symmetric spaces, the notion of an equifocal submanifold was introduced
in [32]. This notion is defined as a compact submanifold with globally flat and
abelian normal bundle such that the focal radius functions for each parallel nor-
mal vector field are constant. However, the equifocality is rather weak property in
the case where the symmetric spaces are of non-compact type and the submanifold
is non-compact. So we [16, 17] have recently introduced the notion of a complex
equifocal submanifold in a symmetric space G/K of non-compact type. This notion
is defined by imposing the constancy of the complex focal radius functions instead
of focal radius functions. Here we note that the complex focal radii are the quan-
tities indicating the positions of the focal points of the extrinsic complexification
of the submanifold, where the submanifold needs to be assumed to be complete
and of class Cω (i.e., real analytic). On the other hand, Heintze-Liu-Olmos [11]
has recently defined the notion of an isoparametric submanifold with flat section in
a general Riemannian manifold as a submanifold such that the normal holonomy
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group is trivial, its sufficiently close parallel submanifolds are of constant mean cur-
vature with respect to the radial direction and that the image of the normal space
at each point by the normal exponential map is flat and totally geodesic. We [17]
showed the following fact:

All isoparametric submanifolds with flat section in a symmetric space G/K of
non-compact type are complex equifocal and that conversely, all curvature-adapted
and complex equifocal submanifolds are isoparametric ones with flat section.

Here the curvature-adaptedness means that, for each normal vector v of the
submanifold, the Jacobi operator R(·, v)v preserves the tangent space of the sub-
manifold invariantly and the restriction of R(·, v)v to the tangent space commutes
with the shape operator Av, where R is the curvature tensor of G/K. Note that
curvature-adapted hypersurfaces in a complex hyperbolic space (and a complex
projective space) mean so-called Hopf hypersurfaces and that curvature-adapted
complex equifocal hypersurfaces in the space mean Hopf hypersurfaces with con-
stant principal curvatures, whcih are classified by J. Berndt [1]. Also, he [2]
classified curvature-adapted hypersurfaces with constant prinicipal curvatures (i.e.,
curvature-adapted complex equifocal hypersurfaces) in the quaternionic hyperbolic
space. In Appendix 2, we will prove an important fact for a curvature-adapted
submanifold. As a subclass of the class of complex equifocal submanifolds, we
[18] defined that of the proper complex equifocal submanifolds in G/K as a com-
plex equifocal submanifold whose lifted submanifold to H0([0, 1], g) (g := LieG)
through some pseudo-Riemannian submersion of H0([0, 1], g) onto G/K is proper
complex isoparametric in the sense of [16], where we note that H0([0, 1], g) is a
pseudo-Hilbert space. For a proper complex equifocal Cω-submanifold, we [19] de-
fined the notion of the associated complex Coxeter group as the Coxeter group
generated by the complex reflections of order two with respect to complex focal hy-
perplanes in the normal space of the lift of the complexification of the submanifold
to H0([0, 1], gc) (gc := LieGc) by some anti-Kaehler submersion of H0([0, 1], gc)
onto the anti-Kaehler symmetric space Gc/Kc, where we note that the lifted sub-
manifold is proper anti-Kaehler isoparametric in the sense of [17]. Here we note
that the associated complex Coxeter group can be described by only the complex
focal structure of the original submanifold without the use of the lifted submanifold.
We [19] showed that a proper complex equifocal submanifold is decomposed into
the (non-trivial) extrinsic product of such submanifolds if and only if the associated
complex Coxeter group is decomposable. Thus it is worth to investigate the com-
plex Coxeter group in detail. According to Theorem 1 of [5], all complete equifocal
submanifolds of codimension greater than one on simply connected irreducible sym-
metric space of compact type are homogeneous. Hence they are principal orbits of
hyperpolar actions (see [12]). According to the classification of the hyperpolar ac-
tions by A. Kollross ([22]), all hyperpolar actions of cohomogeneity greater than
one on the irreducible symmetric space are Hermann ones. On the other hand, O.
Goertsches and G. Thorbergsson ([10]) has recently showed that principal orbits of
Hermann actions are curvature-adapted. Hence we have the following fact:
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All complete equifocal submanifolds of codimension greater than one in simply
connected irreducible symmetric spaces of compact type occur as principal
orbits of Hermann actions and hence they are curvature-adapted.

Let G/K be a symmetric space of non-compact type and H be a symmetric
subgroup of G such that (Fixσ)0 ⊂ H ⊂ Fixσ for some involution σ of G, where
Fixσ is the fixed point group of σ and (Fixσ)0 is the identity component of the
group. We ([17]) called the action of such a group H on G/K an action of Hermann
type. In this paper, we call this action Hermann type action for simplicity. We
([17, 18]) showed the following fact:

Principal orbits of a Hermann type action are curvature-adapted and proper
complex equifocal.

From these facts, it is conjectured that comparatively many ones among complex
equifocal submanifolds of codimension greater than one in irreducible symmetric
spaces of non-compact type are curvature-adapted and proper complex equifocal.
The following questions are naturally proposed:

Question. Do all curvature-adapted and proper complex equifocal submanifolds
occur as principal orbits of Hermann type actions?

We defined the notion of a proper complex equifocal submanifold as a complex
equifocal submanifold whose lifted submanifold to the above path space is a proper
complex isoparametric submanifold. It is important to give an equivalent condition
for a complex equifocal submanifold to be proper complex equifocal by using geo-
metric quantities of the original submanifold without the use of those of the lifted
submanifold. In this paper, we give such an equivalent condition for a curvature-
adapted and complex equifocal submanifold. For its purpose, we first introduce the
notion of a focal point of non-Euclidean type on the ideal boundary N(∞) for a
submanifold in a Hadamard manifold N in general. By using this notion, we obtain
the following equivalent condition.

Theorem A. Let M be a curvature-adapted and complex equifocal submanifold in
a symmetric space N := G/K of non-compact type. Then the following conditions
(i) and (ii) are equivalent:

(i) M is proper complex equifocal,
(ii) M has no focal point of non-Euclidean type on the ideal boundary N(∞).

According to this theorem, we can catch a curvature-adapted and proper com-
plex equifocal submanifold as a curvature-adapted and isoparametric submanifold
with flat section which has no focal point of non-Euclidean type on the ideal bound-
ary. In Section 6 of [19], we investigated the complex Coxeter groups associated
with principal orbits of Hermann type actions. According to the investigation
and Appendix of this paper, it follows that the complex Coxeter group associ-
ated with a principal orbit H(gK) of a Hermann type action H × G/K → G/K
is isomorphic to the affine Weyl group (which is denoted by WA

△) associated with
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the root system △ := {α|g−1
∗ T⊥

gK(H(gK)) |α ∈ △ s.t. α|g−1
∗ T⊥

gK(H(gK)) ̸= 0}, where
△ is the root system of G/K with respect to a maximal abelian subspace a con-
taining g−1

∗ T⊥
gK(H(gK)). See Section 2 about the definition of the affine Weyl

group associated with a root system. In order to make sure of whether the above
question is solved affirmatively, it is important to investigate whether the complex
Coxeter group associated with a curvature-adapted and proper complex equifocal
submanifold is isomorphic to the same type group. For the complex Coxeter group
associated with this submanifold, we have the following fact.

Theorem B. Let M be a curvature-adapted and proper complex equifocal Cω-
submanifold in a symmetric space G/K of non-compact type and △ be the root
system of G/K with respect to a maximal abelian subspace a of TeK(G/K) contain-
ing b := g−1

∗ T⊥
gKM , where gK is an arbitrary point of M . Then △ := {α|b | α ∈

△ s.t. α|b ̸= 0} is a weakly root system and the complex Coxeter group associated
with M is isomorphic to the affine Weyl group associated with △.

See Section 2 about the definition of a weakly root system. Thus the complex
Coxeter group associated with a curvature-adapted and proper complex equifocal
Cω-submanifold is isomorphic to the same type one as the group associated with a
principal orbit of a Hermann type action. Hence the possibility for Question to be
solved affirmatively goes up.

Remark 1.1. According to this theorem, in case of codimM = 1, the complex
Coxeter group associated with M is isomorphic to Z2 n Z.

By using Theorem 2 of [19] and Theorem B, we obtain the following splitting
theorem.

Corollary B.1. Let M and △ be as in Theorem B. Then M is decomposed into the
extrinsic product of two curvature-adapted and proper complex equifocal submani-
folds if and only if W△ is decomposable, where W△ is the Coxeter group associated

with △.

See Section 2 about the definition of the Coxeter group associated with a weakly
root system. From this corollary, the following fact follows directly.

Corollary B.2. Let M be as in Theorem B. If G/K is reducible and codimM =
rankG/K, then M is decomposed into the extrinsic product of two curvature-adapted
and proper complex equifocal submanifolds.

For the number of mutually distinct principal curvatures of a curvature-adapted
and proper complex equifocal Cω-submanifold, we have the following fact.

Theorem C. Let M be a curvature-adapted and proper complex equifocal Cω-
submanifold in a symmetric space G/K of non-compact type and A be the shape
tensor of M . Then, for each normal vector v of M at gK, we have

♯SpecAv ≤ ♯(△+ \ △1

+)× 2 + ♯△1

+ + dim zp(b)− codimM,
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where SpecAv is the spectrum of Av, △ is as in the statement of Theorem B,

△1

+ := {β ∈ △+ | the multiplicity of β is equal to 1}, ♯(·) is the cardinal number of
(·) and zp(b) is the centralizer of b in p.

Remark 1.2. Since ♯(△+ \ △1

+) × 2 + ♯△1

+ ≤ ♯(△+ \ △1
+) × 2 + ♯△1

+ (where
△1

+ := {α ∈ △+ | the multiplicity of α is equal to 1}), we have

(1.1) ♯SpecAv ≤ ♯(△+ \ △1
+)× 2 + ♯△1

+ + dim zp(b)− codimM.

In particular, we have the following fact.

Corollary C.1. Let M be as in Theorem C. Assume that codimM = rank(G/K).
Then, for each normal vector v of M , we have ♯SpecAv ≤ ♯(△+ \△1

+)× 2 + ♯△1
+,

where △1
+ := {α ∈ △+ | the multiplicity of α is equal to 1}.

In Table 1, we list up the number mG/K := ♯(△+\△1
+)×2+♯△1

+ for irreducible
symmetric spaces G/K’s of non-compact type. Also, in Appendix 1, we list up the
numbers maxv∈T⊥M ♯SpecAv for principal orbits of Hermann type actions H’s on
irreducible symmetric spaces G/K’s of non-compact type satisfying cohomH =
rank(G/K).

Future plan of research. By using Theorems B and C, we will investigate whether
the above question is solved affirmatively in some symmetric spaces of non-compact
type.

For the focal set of a curvature-adapted and proper complex equifocal Cω-
submanifold, we have the following fact.

Theorem D. Let M be as in Theorem B. Then the focal set of (M,x0) (x0 :
an arbitrary point of M) consists of finitely many totally geodesic hypersurfaces
through some point in the section Σ := exp⊥(T⊥

x0
M).

Let {l i | i = 1, · · · , k} be hyperplanes of T⊥
x0
M such that

k
∪
i=1

exp⊥(li) is the

focal set of (M,x0). Denote by WM,R the group generated by the reflections with
respect to li’s (i = 1, · · · , k). In this paper, we call this group the real Coxeter group
associated with M (at x0). Note that this group is independent of the choice of the
base point x0 up to isomorphicness. For this group, we have the following fact.

Theorem E. Let M and △ be as in Theorem B. Then the real Coxeter group
associated with M is isomorphic to a subgroup of the Coxeter group W△.

Remark 1.3. We consider the case where M is a principal orbit of a Hermann type
actionH×G/K → G/K. Let σ (resp. θ) be an involution of G with (Fixσ)0 ⊂ H ⊂
Fixσ (resp. (Fix θ)0 ⊂ K ⊂ Fix θ), where we may assume σ ◦ θ = θ ◦σ without loss
of generality. Then the real Coxeter group associated with M is isomorphic to the
Weyl group associated with the symmetric space Fix(σ ◦ θ)/H ∩K (see Appendix
1).
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Type G/K ♯△+ ♯△1
+ mG/K

(AI) SL(n,R)/SO(n) (n ≥ 3)
n(n−1)

2
n(n−1)

2
n(n−1)

2

(AII) SU∗(2n)/Sp(n) (n ≥ 3)
n(n−1)

2
0 n(n− 1)

(AIII)
SU(p, q)/S(U(p)× U(q))

(1 ≤ p < q)
p2 + p p p(2p+ 1)

SU(p, p)/S(U(p)× U(p))
(p ≥ 2)

p2 p p(2p− 1)

(BDI)
SO0(p, q)/SO(p)× SO(q)

(2 ≤ p < q)
p2

{
p2

p(p− 1)
p2 (q − p = 1)

p(p+ 1) (q − p ≥ 2)

SO0(1, q)/SO(1)× SO(q) 1

{
1
0

1 (q = 2)
2 (q ≥ 3)

(BDI′) SO0(p, p)/SO(p)× SO(p) p(p− 1) p(p− 1) p(p− 1)

(DIII)
SO∗(2n)/U(n)

(n ≥ 4)

{
n2−1

4
n2

4

n−1
2
n
2

n(n−1)
2

(n : odd)
n(n−1)

2
(n : even)

(CI) Sp(n,R)/U(n) (n ≥ 2) n2 n2 n2

(CII)
Sp(p, q)/Sp(p)× Sp(q)

(p < q)
p(p+ 1) 0 2p(p+ 1)

Sp(p, p)/Sp(p)× Sp(p)
(p ≥ 2)

p2 0 2p2

(EI) E6
6/Sp(4) 36 36 36

(EII) E2
6/SU(6) · SU(2) 24 12 36

(EIII) E−14
6 /Spin(10) · U(1) 6 2 10

(EIV) E−26
6 /F4 3 0 6

(EV) E7
7/(SU(8)/{±1}) 63 63 63

(EVI) E−5
7 /SO′(12) · SU(2) 24 12 36

(EVII) E−25
7 /E6 · U(1) 9 3 15

(EVIII) E8
8/SO

′(16) 120 120 120

(EIX) E−24
8 /E7 · Sp(1) 24 12 36

(FI) F 4
4 /Sp(3) · Sp(1) 24 24 24

(FII) F−20
4 /Spin(9) 2 0 4

(G) G2
2/SO(4) 6 6 6

(II-A)
SL(n,C)/SU(n)

(n ≥ 3)
n(n−1)

2
0 n(n− 1)

(II-BD)
SO(n,C)/SO(n)

(n ≥ 4)

{
(n−1)2

4
n(n−2)

4

0
0

(n−1)2

2
(n : odd)

n(n−2)
2

(n : even)

(II-C) Sp(n,C)/Sp(n) n2 0 2n2

(II-E6) Ec
6/E6 36 0 72

(II-E7) Ec
7/E7 63 0 126

(II-E8) Ec
8/E8 120 0 240

(II-F4) F c
4 /F4 24 0 48

(II-G2) Gc
2/G2 6 0 12

Table 1.
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2. Basic notions and facts

In this section, we recall basic notions introduced in [16-19]. We first recall the
notion of a complex equifocal submanifold. Let M be an immersed submanifold
with abelian normal bundle in a symmetric space N = G/K of non-compact type.
Denote by A the shape tensor of M . Let v ∈ T⊥

x M and X ∈ TxM (x = gK).
Denote by γv the geodesic in N with γ̇v(0) = v. The strongly M -Jacobi field Y
along γv with Y (0) = X (hence Y ′(0) = −AvX) is given by

Y (s) = (Pγv|[0,s] ◦ (D
co
sv − sDsi

sv ◦Av))(X),

where Y ′(0) = ∇̃vY, Pγv|[0,s] is the parallel translation along γv|[0,s] and Dco
sv (resp.

Dsi
sv) is given by

Dco
sv = g∗ ◦ cos(

√
−1ad(sg−1

∗ v)) ◦ g−1
∗(

resp. Dsi
sv = g∗ ◦

sin(
√
−1ad(sg−1

∗ v))√
−1ad(sg−1

∗ v)
◦ g−1

∗

)
.

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of
M along γv are obtained as real numbers s0 with Ker(Dco

s0v − s0D
si
s0v ◦ Av) ̸= {0}.

So, we call a complex number z0 with Ker(Dco
z0v − z0D

si
z0v ◦ Ac

v) ̸= {0} a complex
focal radius of M along γv and call dimKer(Dco

z0v − z0D
si
z0v ◦A

c
v) the multiplicity of

the complex focal radius z0, where A
c
v is the complexification of Av and Dco

z0v (resp.
Dsi

z0v) is a C-linear transformation of (TxN)c defined by

Dco
z0v = gc∗ ◦ cos(

√
−1adc(z0g

−1
∗ v)) ◦ (gc∗)−1(

resp. Dsi
sv = gc∗ ◦

sin(
√
−1adc(z0g

−1
∗ v))√

−1adc(z0g
−1
∗ v)

◦ (gc∗)−1

)
,

where gc∗ (resp. adc) is the complexification of g∗ (resp. ad). Here we note that, in
the case where M is of class Cω, complex focal radii along γv indicate the positions
of focal points of the extrinsic complexification Mc(↪→ Gc/Kc) of M along the com-
plexified geodesic γc

ι∗v, where G
c/Kc is the anti-Kaehler symmetric space associated

with G/K and ι is the natural immersion of G/K into Gc/Kc. See Section 4 of [17]
about the definitions of Gc/Kc, Mc(↪→ Gc/Kc) and γc

ι∗v. Also, for a complex focal
radius z0 of M along γv, we call z0v (∈ (T⊥

x M)c) a complex focal normal vector of
M at x. Furthermore, assume that M has globally flat normal bundle, that is, the
normal holonomy group of M is trivial. Let ṽ be a parallel unit normal vector field
of M . Assume that the number (which may be 0 and ∞) of distinct complex focal
radii along γṽx is independent of the choice of x ∈ M . Furthermore assume that
the number is not equal to 0. Let {ri,x | i = 1, 2, · · · } be the set of all complex focal
radii along γṽx , where |ri,x| < |ri+1,x| or ”|ri,x| = |ri+1,x| & Re ri,x > Re ri+1,x”
or ”|ri,x| = |ri+1,x| & Re ri,x = Re ri+1,x & Im ri,x = −Im ri+1,x < 0”. Let ri
(i = 1, 2, · · · ) be complex valued functions on M defined by assigning ri,x to each
x ∈ M . We call these functions ri (i = 1, 2, · · · ) complex focal radius functions for
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ṽ. We call riṽ a complex focal normal vector field for ṽ. If, for each parallel unit
normal vector field ṽ of M , the number of distinct complex focal radii along γṽx
is independent of the choice of x ∈ M , each complex focal radius function for ṽ is
constant on M and it has constant multiplicity, then we call M a complex equifocal
submanifold.

Next we shall recall the notion of a proper complex equifocal submanifold. For
its purpose, we first recall the notion of a proper complex isoparametric submanifold
in a pseudo-Hilbert space. Let M be a pseudo-Riemannian Hilbert submanifold in
a pseudo-Hilbert space (V, ⟨ , ⟩) immersed by f . See Section 2 of [16] about the
definitions of a pseudo-Hilbert space and a pseudo-Riemannian Hilbert submani-
fold. Denote by A the shape tensor of M and by T⊥M the normal bundle of M .
Note that, for v ∈ T⊥M , Av is not necessarily diagonalizable with respect to an
orthonormal base. We call M a Fredholm pseudo-Riemannian Hilbert submanifold
(or simply Fredholm submanifold) if the following conditions hold:

(F-i) M is of finite codimension,
(F-ii) There exists an orthogonal time-space decomposition V = V− ⊕ V+ such

that (V, ⟨ , ⟩V±) is a Hilbert space and that, for each v ∈ T⊥M , Av is a compact
operator with respect to f∗⟨ , ⟩V± .

Since Av is a compact operator with respect to f∗⟨ , ⟩V± , the operator id − Av is
a Fredholm operator with respect to f∗⟨ , ⟩V± and hence the normal exponential
map exp⊥ : T⊥M → V of M is a Fredholm map with respect to the metric
of T⊥M naturally defined from f∗⟨ , ⟩V± and ⟨ , ⟩V± , where id is the identity
transformation of TM . The spectrum of the complexification Ac

v of Av is described
as {0} ∪ {λi | i = 1, 2, · · · }, where ”|λi| > |λi+1|” or ”|λi| = |λi+1| & Reλi >
Reλi+1” or ”|λi| = |λi+1| & Reλi = Reλi+1 & Imλi = −Imλi+1 > 0”. We call λi

the i-th complex principal curvature of direction v. Assume that M has globally flat
normal bundle. Fix a parallel normal vector field ṽ on M . Assume that the number
(which may be ∞) of distinct complex principal curvatures of ṽx is independent
of the choice of x ∈ M . Then we can define functions λ̃i (i = 1, 2, · · · ) on M
by assigning the i-th complex principal curvature of direction ṽx to each x ∈ M .
We call this function λ̃i the i-th complex principal curvature function of direction
ṽ. If M is a Fredholm submanifold with globally flat normal bundle satisfying the
following condition (CI), then we call M a complex isoparametric submanifold:

(CI) for each parallel normal vector field ṽ, the number of distinct complex
principal curvatures of direction ṽx is independent of the choice of x ∈ M and
each complex principal curvature function of direction ṽ is constant on M and has
constant multiplicity.

Furthermore, if, for each v ∈ T⊥M , there exists a pseudo-orthonormal base of
(TxM)c (x : the base point of v) consisting of the eigenvectors of the complexi-
fied shape operator Ac

v, then we call M a proper complex isoparametric submanifold.
Then, for each x ∈ M , there exists a pseudo-orthonormal base of (TxM)c consisting
of the common-eigenvectors of the complexified shape operators Ac

v’s (v ∈ T⊥
x M)
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because Ac
v’s are commutative. Let {Ei | i ∈ I} (I ⊂ N) be the family of subbun-

dles of (TM)c such that, for each x ∈ M , {Ei(x) | i ∈ I} is the set of all common-
eigenspaces of Ac

v’s (v ∈ T⊥
x M). Note that (TxM)c = ⊕

i∈I
Ei(x) holds. There exist

smooth sections λi (i ∈ I) of ((T⊥M)c)∗ such that Ac
v = λi(v)id on Ei(π(v)) for

each v ∈ T⊥M , where π is the bundle projection of (T⊥M)c. We call λi (i ∈ I) com-
plex principal curvatures of M and call subbundles Ei (i ∈ I) of (T⊥M)c complex
curvature distributions of M . Note that λi(v) is one of the complex principal curva-
tures of direction v. Set li := λ−1

i (1) (⊂ (T⊥
x M)c) and Ri be the complex reflection

of order two with respect to li, where i ∈ I. Denote by WM the group generated
by Ri’s (i ∈ I) which is independent of the choice of x ∈ M up to isomorphicness.
We call li’s complex focal hyperplanes of (M,x). Let N = G/K be a symmetric
space of non-compact type and π be the natural projection of G onto G/K. Let
(g, σ) be the orthogonal symmetric Lie algebra of G/K, f = {X ∈ g |σ(X) = X}
and p = {X ∈ g |σ(X) = −X}, which is identified with the tangent space TeKN .
Let ⟨ , ⟩ be the Ad(G)-invariant non-degenerate symmetric bilinear form of g in-
ducing the Riemannian metric of N . Note that ⟨ , ⟩|f×f (resp. ⟨ , ⟩|p×p) is negative
(resp. positive) definite. Denote by the same symbol ⟨ , ⟩ the bi-invariant pseudo-
Riemannian metric of G induced from ⟨ , ⟩ and the Riemannian metric of N . Set
g+ := p, g− := f and ⟨ , ⟩g± := −π∗

g−
⟨ , ⟩+ π∗

g+
⟨ , ⟩, where πg− (resp. πg+) is the

projection of g onto g− (resp. g+). Let H
0([0, 1], g) be the space of all L2-integrable

paths u : [0, 1] → g (with respect to ⟨ , ⟩g±). LetH
0([0, 1], g−) (resp. H

0([0, 1], g+))
be the space of all L2-integrable paths u : [0, 1] → g− (resp. u : [0, 1] → g+)
with respect to −⟨ , ⟩|g−×g− (resp. ⟨ , ⟩|g+×g+). It is clear that H0([0, 1], g) =
H0([0, 1], g−) ⊕ H0([0, 1], g+). Define a non-degenerate symmetric bilinear form

⟨ , ⟩0 of H0([0, 1], g) by ⟨u, v⟩0 :=
∫ 1

0
⟨u(t), v(t)⟩dt. It is easy to show that the

decomposition H0([0, 1], g) = H0([0, 1], g−) ⊕H0([0, 1], g+) is an orthogonal time-
space decomposition with respect to ⟨ , ⟩0. For simplicity, set H0

± := H0([0, 1], g±)
and ⟨ , ⟩0,H0

±
:= −π∗

H0
−
⟨ , ⟩0 + π∗

H0
+
⟨ , ⟩0, where πH0

−
(resp. πH0

+
) is the projection

of H0([0, 1], g) onto H0
− (resp. H0

+). It is clear that ⟨u, v⟩0,H0
±
=
∫ 1

0
⟨u(t), v(t)⟩g±dt

(u, v ∈ H0([0, 1], g)). Hence (H0([0, 1], g), ⟨ , ⟩0,H0
±
) is a Hilbert space, that is,

(H0([0, 1], g), ⟨ , ⟩0) is a pseudo-Hilbert space. Let H1([0, 1], G) be the Hilbert Lie
group of all absolutely continuous paths g : [0, 1] → G such that the weak derivative
g′ of g is squared integrable (with respect to ⟨ , ⟩g±), that is, g

−1
∗ g′ ∈ H0([0, 1], g).

Define a map ϕ : H0([0, 1], g) → G by ϕ(u) = gu(1) (u ∈ H0([0, 1], g)), where gu is
the element of H1([0, 1], G) satisfying gu(0) = e and g−1

u∗ g
′
u = u. We call this map

the parallel transport map (from 0 to 1). This submersion ϕ is a pseudo-Riemannian
submersion of (H0([0, 1], g), ⟨ , ⟩0) onto (G, ⟨ , ⟩). Let π : G → G/K be the natural
projection. It follows from Theorem A of [16] (resp. Theorem 1 of [17]) that, in the
case where M is curvature adapted (resp. of class Cω), M is complex equifocal if
and only if each component of (π ◦ ϕ)−1(M) is complex isoparametric. In particu-
lar, if components of (π ◦ ϕ)−1(M) are proper complex isoparametric, then we call
M a proper complex equifocal submanifold. Let M be a proper complex equifocal
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Cω-submanifold in G/K, M̃0 be a component of M̃ := (π ◦ ϕ)−1(M). Denote by
W

M̃0
the group defined as above for this proper complex isoparametric submanifold

M̃0, where we take u0 as the base point.
Let N = G/K be a symmetric space of non-compact type, (g, σ) be the orthog-

onal symmetric Lie algebra associated with a symmetric pair (G,K) and g = f+ p
be the Cartan decomposition. Note that f is the Lie algebra of K and p is identified
with the tangent space TeKN , where e is the identity element of G. Let ⟨ , ⟩ be
the Ad(G)-invariant non-degenerate inner product of g inducing the Riemannian
metric of N . Let gc, fc, pc and ⟨ , ⟩c be the complexifications of g, f, p and ⟨ , ⟩,
respectively. Let a be a maximal abelian subspace of p and p = a +

∑
α∈△+

pα be

the root space decomposition with respect to a. Then (gc, fc) is a semi-simple sym-
metric pair, a is a maximal split abelian subspace of pc and pc = ac +

∑
α∈△+

pcα

is the root space decomposition with respect to a, where ac and pcα are the com-
plexifications of a and pα, respectively. Note that ac is the centralizer of a in pc.
See [25] and [23] about the general theory of a semi-simple symmetric pair. Let
Gc (resp. Kc) be the complexification of G (resp. K). The 2-multiple of the
real part Re⟨ , ⟩c of ⟨ , ⟩c is the Killing form of gc regarded as a real Lie algebra.
The restriction 2Re⟨ , ⟩c|pc×pc is an Ad(Kc)- invariant non-degenerate inner prod-
uct of pc (= TeKc(Gc/Kc)). Denote by ⟨ , ⟩′ the Gc-invariant pseudo-Riemannian
metric on Gc/Kc induced from 2Re⟨ , ⟩c|pc×pc . Define an almost complex struc-
ture J0 of pc by J0(X +

√
−1Y ) = −Y +

√
−1X (X,Y ∈ p). It is clear that J0

is Ad(Kc)-invariant. Denote by J̃ the Gc-invariant almost complex structure on

Gc/Kc induced from J0. It is shown that (Gc/Kc, ⟨ , ⟩′, J̃) is an anti-Kaehlerian
manifold and a (semi-simple) pseudo-Riemannian symmetric space. We call this
anti-Kaehlerian manifold an anti-Kaehlerian symmetric space associated with G/K
and simply denote it by Gc/Kc. Let πc : Gc → Gc/Kc be the natural projection
and ϕc : H0([0, 1], gc) → Gc be the parallel transport map for Gc. This map ϕc

is defined in similar to ϕ (see Section 6 of [17] in detail). Let M be a complete

Cω-submanifold in G/K and Mc be the extrinsic complexification of M . Let M̃c
0

be a component of M̃c := (πc ◦ ϕc)−1(Mc). In [19], we called the group generated
by complex reflections of order two with respect to complex focal hyperplanes con-
structing the focal set of M̃c

0 at an arbitrary fixed point u1 the complex Coxeter
group associated with M . Denote by WM this group, which is discrete (see Propo-

sition 3.7 of [19]). Since the complex focal hyperplanes of M̃0 at u0 coincides with

those of M̃c
0 at u1 under some identification of (T⊥

u0
M̃0)

c with T⊥
u1
(M̃c

0 ), we see that
W

M̃0
is isomorphic to WM .

At the end of this section, we recall the notions of the Weyl group and the affine
Weyl group associated with a root system. Let △ be a subset of the dual space E∗

of a Euclidean space E consisting of non-zero vectors. We consider the following
three conditions:

(i) If α, β ∈ △, then sα(β) ∈ △, where sα is the reflection with respect to
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α−1(0),

(ii) If α, β ∈ △, then 2⟨α,β⟩
⟨α,α⟩ ∈ Z,

(iii) If α, aα ∈ △ (a ∈ R), then a = ±1.

If △ satisfies the conditions (i) and (ii), then it is called a root system and fur-
thermore, if △ satisfies the condition (iii), then it is said to be reduced (see [13]).
Here we note that, if △ satisfies the conditions (i) and (iii), then it is called a root
system in [15]. In this paper, if △ satisfies only the condition (i), then we call it
a weakly root system. For a weakly root system △, we denote by W△ the group
generated by the reflection’s with respect to α−1(0)’s (α ∈ △) and denote by WA

△
the affine transformation group generated by the reflections with respect to α−1(j)’s
(α ∈ △, j ∈ Z). We call W△ the linear transformation group associated with △
and WA

△ the affine transformation group associated with △. If W△ is finite, then
we call W△ the Coxeter group associated with △ and, if △ is a root system, then
W△ is called the Weyl group associated with △. Also, if WA

△ is discrete, then we

call WA
△ the affine Weyl group associated with △.

3. Focal points on the ideal boundary

In this section, we introduce the notion of a focal point on the ideal bound-
ary N(∞) for a submanifold M in a Hadamard manifold N . Denote by ∇̃ the
Levi-Civita connection of N and A the shape tensor of M . Let γv : [0,∞) → N
be the normal geodesic of M of direction v ∈ T⊥

x M . If there exists a M -Jacobi

field (resp. strongly M -Jacobi field) Y along γv satisfying lim
t→∞

||Yt||
t = 0, then we

call γv(∞) (∈ N(∞)) a focal point (resp. strongly focal point) on the ideal bound-
ary N(∞) of M along γv, where γv(∞) is the asymptotic class of γv (see Fig.
1). Here a M -Jacobi field along γv implies a Jacobi field Y along γv satisfying
Y (0) ∈ TxM and Y ′(0)T = −AvY (0) and a strongly M -Jacobi field along γv im-
plies a Jacobi field Y along γv satifying Y (0) ∈ TxM and Y ′(0) = −AvY (0), where

Y ′(0) = ∇̃vY and Y ′(0)T is the tangential (to M) component of Y ′(0). We call

Span{Y0 |Y : a M−Jacobi field along γv s.t. limt→∞
||Yt||

t = 0} the nullity space
of the focal point γv(∞). Also, if there exists a M -Jacobi field Y along γv sat-

isfying lim
t→∞

||Yt||
t

= 0 and Sec(v, Y (0)) < 0, then we call γv(∞) a focal point of

non-Euclidean type on N(∞) of M along γv, where Sec(v, Y (0)) is the sectional
curvature for the 2-plane spanned by v and Y (0). If exp⊥(T⊥

x M) is totally geodesic
for each x ∈ M , M is called a submanifold with section. This notion has been
recently defined in [11]. For a submanifold with section in a symmetric space of
non-compact type, we have the following fact.

Proposition 3.1. Let M be a submanifold with section in a symmetric space
N := G/K of non-compact type and v be a normal vector of M at x. Then the
following conditions (i) and (ii) are equivalent:

(i) γv(∞) is a focal point on N(∞) of M along γv,
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M
γv

Y

N(∞)

γv(∞)

Fig. 1.

(ii) γv(∞) is a strongly focal point on N(∞) of M along γv.
Furthermore, if M is homogeneous (hence it is a principal orbit of a polar action

H on N), then these conditions are equivalent to the following conditions:
(iii) there exists a normal geodesic variation δ : [0,∞)× (−ε, ε) → N such that

δ(·, 0) = γv(·), the variational vector field ∂δ
∂s |s=0 is a strongly M -Jacobi field and

that δ(·, s)(∞) = γv(∞) for any s ∈ (−ε, ε).
(iv) the action on N(∞) induced from the H-action posseses a non-trivial sub-

action having γv(∞) as a fixed point.

Proof. First we shall show (i) ⇒ (ii). Assume that γv(∞) is a focal point on N(∞)

along γv. Hence there exists anM -Jacobi field Y along γv such that lim
t→∞

||Y (t)||
t = 0.

The Jacobi field Y is described as

Y (t) = Pγv|[0,t]
(
Dco

tv (Y (0)) +Dsi
tv(−AtvY (0) + Y ′(0)⊥)

)
,

where Pγv|[0,t] is the parallel translation along γv|[0,t], Dco
tv and Dsi

tv are as in the

previous section, A (resp. ∇⊥) is the shape tensor (resp. the normal connection)

of M and Y ′(0)⊥ is the normal component of Y ′(0)(= ∇̃vY ). Since M has section,
we have Dco

tv (Y (0)), Dsi
tv(AtvY (0)) ∈ TxM . Hence we have ||Y (t)|| ≥ ||(Dco

tv −
Dsi

tv ◦Atv)(Y (0))||. The strongly M -Jacobi field Y S along γv with Y S(0) = Y (0) is
described as

(3.1) Y S(t) = Pγv|[0,t]
(
(Dco

tv −Dsi
tv ◦Atv)(Y (0))

)
.

Hence we have ||Y (t)|| ≥ ||Y S(t)|| and hence lim
t→0

||Y S(t)||
t = 0. Thus γv(∞) is a

strongly focal point on N(∞) along γv. Thus we have (i) ⇒ (ii). The converse
(ii) ⇒ (i) is trivial.
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Next we shall show that (ii) ⇒ (iii) holds if M is homogeneous. Assume that
γv(∞) is a strongly focal point on N(∞) along γv. Hence there exists a strongly

M -Jacobi field Y S along γv with lim
t→0

||Y S(t)||
t = 0. Since Y S is described as in

(3.1), we have ||Y S(t)|| = ||(Dco
tv −Dsi

tv ◦Atv)(Y
S(0))||. Since M is a homogeneous

submanifold with section, it is catched as a principal orbit of some complex polar
action H × G/K → G/K (H ⊂ G). See [17] about the definition of a complex
polar action. Let {exp sX | s ∈ R} be a one-parameter subgroup of H such that
d(exp sX)(x)

ds |s=0 = Y (0). Set α(s) := (exp sX)(x). Let ṽ be the parallel normal
vector field along α with ṽ0 = v. Define δ : [0,∞) × (−ε, ε) → N by δ(t, s) :=
exp⊥(tṽs). We have ∂δ

∂s |s=0 = Y S . Set Y S
s0 := ∂δ

∂s |[0,∞)×{s0} for each s0 ∈ (−ε, ε).
Since Y S

s0 is a strongly M -Jacobi field along δ(·, s0), it is described as in (3.1).
Hence we have ||Y S

s0(t)|| = ||(Dco
tṽs

− Dsi
tṽs

◦ Atṽs)(Y
S
s0(0))||. Since M is a principal

orbit of the H-action, we have ṽs = (exp sX)∗(v) (s ∈ (−ε, ε)). From this fact,
we have ||(Dco

tṽs0
−Dsi

tṽs0
◦ Atṽs0

)(Y S
s0(0))|| = ||(Dco

tv −Dsi
tv ◦ Atv)(Y

S(0))|| ((t, s0) ∈
[0,∞)×(−ε, ε)). Therefore, we have ||Y S

s0(t)|| = ||Y S(t)|| ((t, s0) ∈ [0,∞)×(−ε, ε)).
Hence we have

lim
t→∞

d(δ(t, s0), γv(t))

t
≤ lim

t→∞

1

t

∫ s0

0

||Y S
s (t)||ds

= lim
t→∞

s0||Y S(t)||
t

= 0,

that is, δ(·, s0)(∞) = γv(∞). Thus (ii) ⇒ (iii) is shown. The converse is trivial.
Also, (iii) ⇔ (iv) is trivial. This completes the proof. 2

Remark 3.1. Let γ be a normal geodesic of a princial orbit M of a polar action
H on N = G/K. If γ(∞) is a fixed point of the action on N(∞) induced from the
H-action, then γ(∞) is a focal point of M along γ having Tγ(0)M as the nullity
space.

Now we shall illustrate that the second-half of the statement in Proposition
3.1 does not hold without the assumption of the homogeneity of M . Let S be
a horosphere in a symmetric space N = G/K of non-compact type and M be a
non-homogeneous hypersurface in N through x ∈ S such that j2x(ιM ) = j2x(ιS) but
j3x(ιM ) ̸= j3x(ιS) and that M positions outside or inside S (see Fig. 2), where ιM
(resp. ιS) is the inclusion map of M (resp. S) into N and j2x(·) is the 2-jet of · at x.
Since M is a hypersurface, it has sections. Let v be the inward unit normal vector
of S at x. Then γv(∞) is a focal point on N(∞) of M along γv but there does not
exist a normal (to M) geodesic variation δ : [0,∞) × (−ε, ε) → N of γv such that
δ(·, 0) = γv, the variational vector field

∂δ
∂s |s=0 is a strongly M -Jacobi field and that

δ(·, s0)(∞) = γv(∞) for each s0 ∈ (−ε, ε). Thus the second-half of the statement
in Proposition 3.1 does not hold without the assumption of the homogeneity of M .
Since S is complex equifocal, j2x(ιM ) = j2x(ιS) and j3x(ιM ) ̸= j3x(ιS), we see that M
is not complex equifocal. In more general, it is conjectured that the second-half of
the statement in Proposition 3.1 holds if M is complex equifocal.
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Fig. 2.

4. Proof of Theorem A

In this section, we shall prove Theorem A stated in Introduction. First we pre-
pare the following lemma.

Lemma 4.1. Let M be a curvature-adapted submanifold with section in a symmet-
ric space N = G/K of non-compact type. Then the following conditions (i) and (ii)
are equivalent:

(i) M has no focal point of non-Euclidean type on N(∞),
(ii) for each unit normal vector v of M and each µ ∈ SpecR(·, v)v \{0}, ±

√
−µ

are not eigenvalues of Av|Ker(R(·,v)v−µ id), where R is the curvature tensor of G/K
and A is the shape tensor of M .

Proof. First we note that the condition (i) is equivalent to the following condition:

(i′) M has no strongly focal point of non-Euclidean type on N(∞).

In fact, this fact follows from Proposition 3.1 because M has sections. Fix a unit
normal vector v of M at any x = gK ∈ M . Since M is curvature-adapted, we have

(4.1) TxM = ⊕
λ∈SpecAv

⊕
µ∈SpecR(·,v)v

(Ker(R(·, v)v − µ id) ∩Ker(Av − λ id)) ,

where Spec(·) is the spectrum of (·). A strongly M -Jacobi field Y along γv with
Y (0) ∈ Ker(R(·, v)v − µ id) ∩Ker(Av − λ id) (µ ̸= 0) is described as

Y (t) = Pγv|[0,t]
(
(Dco

tv −Dsi
tv ◦Atv)(Y (0))

)
=

(
cosh(t

√
−µ)− λ sinh(t

√
−µ)√

−µ

)
Pγv|[0,t](Y (0)).

If λ = ±
√
−µ, then we have ||Y (t)|| = ||Y (0)||e±t

√
−µ. Hence we have lim

t→∞
||Y (t)||

t =

0 or lim
t→−∞

||Y (t)||
t = 0. Also, from Y (0) ∈ Ker(R(·, v)v − µ id) and µ ̸= 0, we
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have Sec(v, Y (0)) < 0. Hence, either γv(∞) or γ−v(∞) is a strongly focal point
of non-Euclidean type on N(∞) of M . Thus not (ii) ⇒ not (i), that is, (i) ⇒
(ii) is shown. Assume that (ii) holds. Take an arbitrary X (̸= 0) ∈ TxM with
Sec(v,X) < 0. Let S := {(λ, µ) ∈ SpecAv × SpecR(·, v)v |Ker(R(·, v)v − µ id) ∩
Ker(Av − λ id) ̸= {0}} and S0 := {(λ, µ) ∈ S |µ = 0}. Let X =

∑
(λ,µ)∈S

Xλ,µ, where

Xλ,µ ∈ Ker(R(·, v)v − µ id) ∩Ker(Av − λ id). The strongly M -Jacobi field Y along
γv with Y (0) = X is described as

Y (t) = Pγv|[0,t]
(
(Dco

tv −Dsi
tv ◦Atv)(X)

)
=

∑
(λ,µ)∈S\S0

(
cosh(t

√
−µ)− λ sinh(t

√
−µ)√

−µ

)
Pγv|[0,t](Xλ,µ)

+
∑

(λ,µ)∈S0

(1− tλ)Pγv|[0,t](Xλ,µ).

Hence we have

||Y (t)||2 =
∑

(λ,µ)∈S\S0

(
cosh(t

√
−µ)− λ sinh(t

√
−µ)√

−µ

)2

||Xλ,µ||2

+
∑

(λ,µ)∈S0

(1− tλ)2||Xλ,µ||2.

Since Sec(v,X) < 0, there exists (λ0, µ0) ∈ S \ S0 with Xλ0,µ0 ̸= 0. Then we have

||Y (t)||2

t2
≥ 1

t2

(
cosh(t

√
−µ0)−

λ0 sinh(t
√
−µ0)√

−µ0

)2

||Xλ0,µ0 ||2

=
1

2t2

(
(1− λ0√

−µ0
)et

√
−µ0 + (1 +

λ0√
−µ0

)e−t
√
−µ0

)2

||Xλ0,µ0 ||2.

Hence, since λ0 ̸= ±
√
−µ0 by the assumption, we have lim

t→∞

||Y (t)||
t

= ∞. From

the arbitrariness of X ∈ TxM , it follows that γv(∞) is not a focal point of non-
Euclidean type (on N(∞)) of M . Furthermore, from the arbitrarinesses of v and x,
we see that M has no focal point of non-Euclidean type on N(∞). Thus (ii) ⇒ (i)
is shown. 2

Remark 4.1. By imitating the proof of this lemma, it is shown that the following
conditions (i′) and (ii′) are equivalent:

(i′) M has no focal point on N(∞),
(ii′) for each unit normal vector v of M and each µ ∈ SpecR(·, v)v, ±

√
−µ are

not eigenvalues of Av|Ker(R(·,v)v−µI).

By using this lemma, the statement of Theorem A is proved.

Proof of Theorem A. According to the proof of the statement (ii) of Theorem 1 in
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[17], M is proper complex equifocal if and only if the following condition (∗) holds:

(∗) for each unit normal vector v of Mc and each µ ∈ SpecJR
c(·, v)v \ {0},√

µ (2-values) are not J-eigenvalues of Ac
v|Ker(Rc(·,v)v−µ id), where Ac is the shape

tensor of Mc, Rc is the curvature tensor of Gc/Kc, J is the complex structures of
Mc and SpecJ(·) is the J-spectrum of (·).
It is easy to show that this condition (∗) is equivalent to the condition (ii) of Lemma
4.1. Hence the statement of Theorem A follows from Lemma 4.1. 2

5. Proofs of Theorems B∼E

In this section, we shall prove Theorems B∼E. For its purpose, we prepare
a lemma. Let M be a curvature-adapted and proper complex equifocal Cω-
submanifold in a symmetric space G/K of non-compact type, where we may assume
that eK ∈ M (e : the identity element of G) by operating an element of G to M if
necessary and hence the constant path 0̂ at the zero element 0 of g is contained in
M̃ := (π◦ϕ)−1(M). Denote by M̃0 the component of M̃ containing 0̂. Fix a unit nor-
mal vector v of M at eK. Set p := TeK(G/K) and b := T⊥

eKM . Let p = a+
∑

α∈△+

pα

be the root space decomposition with respect to a lexicographically ordered max-
imal abelian subspace a containing b. Let △ := {α|b |α ∈ △ s.t. α|b ̸= 0} and
p = zp(b) +

∑
β∈△+

pβ be the root space decomposition with respect to b, where

zp(b) is the centralizer of b in p. For convenience, we denote zp(b) by p0. Then we
have pβ =

∑
α∈△+ s.t. α|b=±β pα (β ∈ △+) and p0 = a +

∑
α∈△+ s.t. α|b=0 pα. Let

vL be the horizontal lift of v to 0̂. Denote by A (resp. Ã) the shape tensor of M

(resp. M̃0). According to Theorem 5.9 of [16], we have the following fact.

Lemma 5.1. If the spectrum of Av is equal to {λ1, · · · , λg}, then the spectrum of

Ãc
vL is given by

{0} ∪ {λi | i ∈ I0}

∪

(
∪

µ∈SpecR(·,v)v\{0}
{

√
−µ

arctanh
√
−µ
λi

+ jπ
√
−1

| i ∈ I+µ , j ∈ Z}

)

∪

(
∪

µ∈SpecR(·,v)v\{0}
{

√
−µ

arctanh λi√
−µ

+ (j + 1
2 )π

√
−1

| i ∈ I−µ , j ∈ Z}

)
,

where I0 = {i |KerR(·, v)v ∩ Ker(Av − λi id) ̸= {0}}, I+µ := {i ∈ Iµ | |λi| >
√
−µ}

and I−µ := {i ∈ Iµ | |λi| <
√
−µ} as Iµ := {i |Ker(R(·, v)v−µ id)∩Ker(Av−λi id) ̸=

{0}}.

Now we shall prove Theorems B and C in terms of this lemma.

Proof of Theorems B and C. LetmA := max
v∈b\{0}

♯SpecAv andmR := max
v∈b\{0}

♯SpecR(·, v)v.



On Curvature-Adapted and Proper Complex Equifocal Submanifolds 525

Let U := {v ∈ b \ {0} | ♯SpecAv = mA, ♯SpecR(·, v)v = mR}, which is an open
dense subset of b \ {0}. Note that SpecR(·, v)v = {−β(v)2 |β ∈ △+} and, if

v ∈ U , then β(v)2’s (β ∈ △+) are mutually distinct (i.e., mR = ♯△+). Let
SpecAv = {λv

1, · · · , λv
mA

} (λv
1 > · · · > λv

mA
) (v ∈ U). Then it follows from Lemma

5.1 that

(5.1)

SpecÃc
vL

= {0} ∪ {λv
i | i ∈ Iv0 }

∪

 ∪
β∈△+

{ β(v)

arctanhβ(v)
λv
i

+ jπ
√
−1

| i ∈ (Ivβ)
+, j ∈ Z}


∪

 ∪
β∈△+

{ β(v)

arctanh
λv
i

β(v) + (j + 1
2 )π

√
−1

| i ∈ (Ivβ)
−, j ∈ Z}


for any v ∈ U , where Iv0 := {i | p0∩Ker(Av−λv

i id) ̸= {0}}, (Ivβ)+ := {i ∈ Ivβ | |λv
i | >

|β(v)|} and (Ivα)
− := {i ∈ Ivβ | |λv

i | < |β(v)|} as Ivβ := {i | pβ∩Ker(Av−λv
i id) ̸= {0}}.

Let F be the sum of all complex focal hyperplanes of (M̃0, 0̂). From (5.1), the set

(5.2) ∪
v∈U



{ 1

λv
i

vL | i ∈ Iv0 s.t. λv
i ̸= 0}∪ ∪

β∈△+

{
arctanhβ(v)

λv
i

+ jπ
√
−1

β(v)
vL | i ∈ (Ivβ)

+, j ∈ Z}

∪ ∪
β∈△+

{
arctanh

λv
i

β(v) + (j + 1
2 )π

√
−1

β(v)
vL | i ∈ (Ivβ)

−, j ∈ Z}




is contained in F . Fix v0 ∈ U . Since the set (5.2) is contained in F and F consists

of infinitely many complex hyperplanes of (T⊥
0̂
M̃0)

c, it is shown by delicate argu-

ment that there exist the complex linear functions ϕi (i ∈ Iv00 s.t. λv0
i ̸= 0), ϕ1

β,i,j

(β ∈ △+, i ∈ (Iv0

β )+, j ∈ Z) and ϕ2
β,i,j (β ∈ △+, i ∈ (Iv0

β )−, j ∈ Z) on (T⊥
0̂
M̃0)

c(=

bc) satisfying ϕi(v) = λv
i (v ∈ U ′), ϕ1

β,i,j(v) =
β(v)

arctanhβ(v)
λv
i

+ jπ
√
−1

(v ∈ U ′) and

ϕ2
β,i,j(v) =

β(v)

arctanh
λv
i

β(v) + (j + 1
2 )π

√
−1

(v ∈ U ′), respectively, where U ′ is a suffi-

ciently small neighborhood of v0 in U . Since ϕk
β,i,j(v) =

β(v)ϕk
β,i,0(v)

β(v)+jπϕk
β,i,0(v)

√
−1

for all

v ∈ U ′ and all j ∈ Z and ϕk
β,i,j ’s are complex linear, we see that β(v)

ϕk
β,i,j(v)

is inde-

pendent of the choice of v ∈ U ′, where β ∈ △+ and (k, i) ∈ ({1}× (Iv0

β )+)∪ ({2}×

(Iv0β )−). That is,
β(v)

λv
i

(i ∈ (Iv0β )+ (β ∈ △+)) and
λv
i

β(v)
(i ∈ (Iv0β )− (β ∈ △+)) are
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independent of the choices of v ∈ U ′. Set c+β,i :=
β(v0)

λv0
i

(i ∈ (Iv0β )+ (β ∈ △+)) and

c−β,i :=
λv0
i

β(v0)
(i ∈ (Iv0β )− (β ∈ △+)). Hence we have ϕ1

β,i,j =
βc|bc

arctanhc+β,i + jπ
√
−1

and ϕ2
β,i,j =

βc|bc

arctanhc−β,i + (j + 1
2 )π

√
−1

. Clearly we have

(5.3)

F =

(
∪

i∈I
v0
0 s.t. λ

v0
i ̸=0

ϕ−1
i (1)

)

∪

(
∪

β∈△+

∪
(i,j)∈(I

v0
β )+×Z

(ϕ1
β,i,j)

−1(1)

)

∪

(
∪

β∈△+

∪
(i,j)∈(I

v0
β )−×Z

(ϕ2
β,i,j)

−1(1)

)

=

(
∪

i∈I
v0
0 s.t. λ

v0
i ̸=0

ϕ−1
i (1)

)

∪

(
∪

β∈△+

∪
(i,j)∈(I

v0
β )+×Z

(βc)−1(arctanhc+β,i + jπ
√
−1)

)

∪

(
∪

β∈△+

∪
(i,j)∈(I

v0
β )−×Z

(βc)−1(arctanhc−β,i + (j +
1

2
)π
√
−1)

)
.

The group W
M̃0

is generated by the complex reflections of order two with respect

to the complex hyperplanes in (5.3) constructing F . This group is isomorphic to
the complex Coxeter group WM associated with M and hence it is discrete and,
according to Lemma 3.5 of [19], F is W

M̃0
-invariant. On the other hand, it is easy

to show that the complex reflection group generated by the complex reflections of
order two with respect to (βc)−1(0)’s (β ∈ △+) is of rank r, where r := codimM .
Therefore, we have

(5.4)

F =

(
∪

β∈△+

∪
(i,j)∈(I

v0
β )+×Z

(βc)−1(arctanhc+β,i + jπ
√
−1)

)

∪

(
∪

β∈△+

∪
(i,j)∈(I

v0
β )−×Z

(βc)−1(arctanhc−β,i + (j +
1

2
)π
√
−1)

)
,

where we note that {i ∈ Iv0
0 |λv0

i ̸= 0} is not necessarily empty set. Denote by
projR the natural projection of bc onto b and set FR := projR(F ). Then we have

(5.5)

FR =

(
∪

β∈△+

∪
i∈(I

v0
β )+

β−1(arctanhc+β,i)

)

∪

(
∪

β∈△+

∪
i∈(I

v0
β )−

β−1(arctanhc−β,i)

)
.
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Let W ′
M̃0

be the group generated by the reflections (in b) with respect to the hyper-

planes constructing FR. Since F is W
M̃0

-invariant, FR is W ′
M̃0

-invariant. Therefore,

since FR consists of finite pieces of (real) hyperplanes (in b), the intersection of all
the hyperplanes constructing FR is non-empty. Take an element Z of the intersec-
tion. Then complex hyperplanes in (5.4) constructing F are rewritten as

(5.6)
(βc)−1(arctanhc+β,i + jπ

√
−1) = Z + (βc)−1(jπ

√
−1),

(βc)−1(arctanhc−β,i + (j +
1

2
)π
√
−1) = Z + (βc)−1((j +

1

2
)π
√
−1),

respectively. Hence we see that W
M̃0

is isomorphic to the group generated by

the (real) reflections with respect to the hyperplanes β̂−1(jπ)’s (β ∈ △+

+, j ∈ Z)

and β̂−1((j + 1
2 )π)’s (β ∈ △−

+, j ∈ Z) in
√
−1b, where β̂ := −

√
−1βc|√−1b and

△±
+ := {β ∈ △+ | (Iv0β )± ̸= ∅}. Thus W

M̃0
is isomorphic to the affine transformation

group associated with △. Hence, since F is W
M̃0

-invariant, we see that △ is a

weakly root system. This completes the proof of Theorem B. According to (5.6),
for each fixed β ∈ △+, c

+
β,i’s (i ∈ (Iv0

β )+) coincide and so are c−β,i’s (i ∈ (Iv0β )−)

also. In particular, we have ♯(Iv0

β )+ ≤ 1 and ♯(Iv0

β )− ≤ 1. This fact implies that
♯SpecAv0 is evaluated from above as in the statement of Theorem C. From v0 ∈ U
and the definition of U , it follows that ♯SpecAv ≤ ♯SpecAv0 for any normal vector
v. Therefore the statement of Theorem C follows. 2

Remark 5.1. In the case where M is curvature-adapted equifocal submanifold in
a symmetric space G/K of compact type, we have

SpecÃc
vL = SpecÃvL

= {0} ∪ {λv
i | i ∈ Iv0 }

∪

 ∪
β∈△+

{ β(v)

arctanhβ(v)
λv
i

+ jπ
| i ∈ Ivβ , j ∈ Z}

 ,

where ÃvL , △+, I
v
0 and Ivβ are as in the above proof. Also, we have

F = ∪
β∈△+

∪
(i,j)∈I

v0
β ×Z

(βc)−1(arctanhcβ,i + jπ)

and hence

(5.7) FR = ∪
β∈△+

∪
(i,j)∈I

v0
β ×Z

β−1(arctanhcβ,i + jπ),

where F, FR and v0 are as in the above proof and cβ,i :=
β(v0)

λ
v0
i

. Furthermore, it is

shown that FR is W ′
M̃0

-invariant, where W ′
M̃0

is as in the above proof. Note that

W ′
M̃0

is the affine Coxeter group asociated with the isoparametric submanifold M̃0.
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However, it does not follow from these facts that, for each fixed β, cβ,i’s (i ∈ Iv0

β )
coincide because of the existenceness of the term jπ in the right-hand side of the
relation (5.7). Thus we cannot evaluate ♯SpecAv from above for curvature-adapted
equifocal submanifolds in a symmetric space of compact type.

Next we shall prove Corollary B.1.

Proof of Corollary B.1. According to Theorem 2 in [19], it follows that M is decom-
posed into the (non-trivial) product of two curvature-adapted and proper complex
equifocal submanifolds if and only if the complex Coxeter group associated with M
is decomposable. Hence the statement of Corollary B.1 follows from Theorem B. 2

Next we shall prove Corollary B.2 in terms of Corollary B.1.

Proof of Corollary B.2. Since codimM = rankG/K, we have △ = △, that is, W△
is equal to the Weyl group associated with the symmetric space G/K. Hence, since
G/K is reducible, W△ is decomposable. Therefore, the statement of Corollary B.2
follows from Corollary B.1. 2

Next we shall prove Theorem D.

Proof of Theorem D.Without loss of generality, we may assume x0 = eK. According
to the proof of Theorem B, the sum F of all complex focal hyperplanes of (M̃, 0̂) is

as in (5.4). The intersection of F (⊂ (T⊥
0̂
M̃)c = bc) with b is as follows:

(5.8) F ∩ b = ∪
β∈△+

∪
i∈(I

v0
β )+

β−1(arctanhc+β,i).

Since β−1(arctanhc+β,i) (i ∈ (Iv0

β )+ (β ∈ △+)) are (real) hyperplanes in b
through Z in the proof of Theorems B and C and b (⊂ p ⊂ g) is abelian,
exp⊥(β−1(arctanhc+β,i)) (i ∈ (Iv0β )+ (β ∈ △+)) are totally geodesic hypersurfaces

through exp⊥(Z) in the section Σ := exp⊥(b). On the other hand, it is clear that
exp⊥(F ∩b) is the focal set of (M, eK). Hence, the statement of Theorem D follows.
2

Next we shall prove Theorem E.

Proof of Theorem E. From (5.4) and (5.8), the statement of Theorem E follows. 2.

Appendix 1

In this appendix, we shall first calculate the complex Coxeter group WM and
the real Coxeter group WM,R associated with a principal orbit M of a Hermann
type action H × G/K → G/K without use of Theorems B and E. Let θ be the
Cartan involution of G with (Fix θ)0 ⊂ K ⊂ Fix θ and σ be an involution of G with
(Fixσ)0 ⊂ H ⊂ Fixσ. Without loss of generality, we may assume that σ ◦θ = θ ◦σ.
Denote by A the shape tensor of M . Then H(eK) is a totally geodesic singular orbit
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of the H-action and M is catched as a partial tube over H(eK). Let L := Fix(σ◦θ).
The submanifold exp⊥(T⊥

eK(H(eK))) is totally geodesic and it is isometric to the
symmetric space L/H ∩K, where exp⊥ is the normal exponential map of H(eK).
Let g, f and h be the Lie algebras of G, K and H. Denote by the same symbols
the involutions of g associated with θ and σ. Set p := Ker(θ + id) (⊂ g) and
q := Ker(σ+ id) (⊂ g). Take x := exp⊥(ξ) = expG(ξ)K ∈ M ∩ exp⊥(T⊥

eK(H(eK))),
where ξ ∈ p. For simplicity, set g := expG(ξ). Let Σ be the section of M through
x, which pass through eK. Let b := TeKΣ, a be a maximal abelian subspace of p =
TeK(G/K) containing b, △ be the root system with respect to a and p = a+

∑
α∈△+

pα

be the root space decomposition with respect to a. Set p′ := p∩ q(= T⊥
eK(H(eK))).

The orthogonal complement p′
⊥

of p′ in p is equal to p ∩ h. Set △ := {α|b |α ∈
△ s.t. α|b ̸= 0}, pβ :=

∑
α∈△+ s.t. α|b=±β

pα for β ∈ △+, △
H

+ := {β ∈ △+ | p′⊥ ∩ pβ ̸=

{0}} and △V

+ := {β ∈ △+ | p′ ∩ pβ ̸= {0}}. Since both p′ and p′
⊥

are Lie triple

systems of p and b is contained in p′, we have p′
⊥
= zp′⊥(b) +

∑
β∈△H

+

(p′
⊥ ∩ pβ) and

p′ = b+
∑

β∈△V
+

(p′ ∩ pβ), where zp′⊥(b) is the centralizer of b in p′
⊥
. Take η ∈ T⊥

x M .

For each X ∈ p′
⊥ ∩ pβ (β ∈ △H

+ ), we can show

(A.1) AηX̃ξ = −β(η̄) tanhβ(ξ)X̃ξ

(see the proof of Theorem B of [18]), where X̃ξ is the horizontal lift of X to ξ (see
Section 3 of [18] about this definition) and η̄ is the element of b with exp⊥∗ξ(η̄) = η
(where η̄ is regarded as an element of Tξp

′ under the natural identification of p′

with Tξp
′). Also, for each Y ∈ Tx(M ∩ exp⊥(p′)) ∩ g∗pβ (β ∈ △V

+), we can show

(A.2) AηY = − β(η̄)

tanhβ(ξ)
Y

(see the proof of Theorem B of [18]). Let M̃0 be a component of M̃ := (π◦ϕ)−1(M)

and Ã be the shape tensor of M̃0. From (A.1), (A.2) and Lemma 5.1, we have

(A.3)

SpecÃc
ηL = {0} ∪ { β(η̄)

−β(ξ) + jπ
√
−1

|β ∈ △V

+, j ∈ Z}

∪{ β(η̄)

−β(ξ) + (j + 1
2 )π

√
−1

|β ∈ △H

+ , j ∈ Z}.

Denote by F the sum of all complex focal hyperplanes of (M̃0, u), where u ∈ (π ◦
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ϕ)−1(gK) ∩ M̃0. From (A.3), we have

(A.4)

g−1
∗ F =

(
∪

β∈△V
+

∪
j∈Z

(βc)−1(−β(ξ) + jπ
√
−1)

)

∪

(
∪

β∈△H
+

∪
j∈Z

(βc)−1(−β(ξ) + (j +
1

2
)π
√
−1)

)

=

(
∪

β∈△V
+

∪
j∈Z

(−ξ + (βc)−1(jπ
√
−1))

)

∪

(
∪

β∈△H
+

∪
j∈Z

(−ξ + (βc)−1((j +
1

2
)π
√
−1))

)
,

where we regard F as a subspace of (T⊥
gKM)c under the natural identification of

(T⊥
u M̃0)

c with (T⊥
gKM)c. From (A.4), it follows that the complex Coxeter group

WM associated with M is isomorphic to the affine Weyl group associated with the
root system △. Also, we have g−1

∗ (F ∩ T⊥
gKM) = ∪

β∈△V
+

(−ξ + β−1(0)). Hence the

real Coxeter group WM,R associated with M is isomorphic to the group generated

by the reflections with respect to β−1(0)’s (β ∈ △V

+). Since △V

+ is the positive
root system associated with the symmetric space exp⊥(p′) = L/H ∩ K, WM,R is
isomorphic to the Weyl group associated with L/H ∩K.

Next we shall list up the numbers max
v∈T⊥M

♯SpecAv for principal orbits M ’s of

Hermann type actions H’s on irreducible symmetric spaces G/K’s of non-compact
type satisfying cohomH = rank(G/K). We shall use the notations of the last

paragraph. Since pβ = pβ ∩p′+pβ ∩p′
⊥
for each β ∈ △+, we have △+ = △V

+ ∪△H

+ .
Hence, from (A.1) and (A.2), we have the following equality:

(A.5) max
v∈T⊥M

♯SpecAv = ♯△+ + ♯(△V

+ ∩△H

+ ).

In case of cohomH = rank(G/K), then we have a = b and hence △+ = △+. Hence
we can list up the numbers max

v∈T⊥M
♯SpecAv for the principal orbits M ’s in the case

(see Tables 2∼4). The symbol ˜SO0(1, 8) in Table 4 denotes the universal covering
of SO0(1, 8) and the symbol α in Table 4 denotes an outer automorphism of G2

2.
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H G/K maxv∈T⊥M ♯SpecAv

SO(n) SL(n,R)/SO(n)
n(n−1)

2

SO0(p, n− p) SL(n,R)/SO(n)
n(n−1)

2

Sp(n) SU∗(2n)/Sp(n) n(n−1)
2

SO∗(2n) SU∗(2n)/Sp(n) n(n− 1)

Sp(p, n− p) SU∗(2n)/Sp(n) n(n−1)
2

S(U(p)× U(q)) (p ≤ q) SU(p, q)/S(U(p)× U(q))

{
p(p+ 1) (p < q)
p2 (p = q)

SO0(p, q) (p ≤ q) SU(p, q)/S(U(p)× U(q)) p(2p+ 1)

SO∗(2p) SU(p, p)/S(U(p)× U(p)) p(2p− 1)

SL(p,C) · U(1) SU(p, p)/S(U(p)× U(p)) p2

SU(n) SL(n,C)/SU(n)
n(n−1)

2

SO(n,C) SL(n,C)/SU(n) n(n− 1)

SO(p)× SO(q) (p ≤ q) SO0(p, q)/SO(p)× SO(q)

{
p2 (p < q)
p(p− 1) (p = q)

SO(p,C) SO0(p, p)/SO(p)× SO(p) p(p− 1)

U(n) SO∗(2n)/U(n)

{
n2−1

4
(n : odd)

n2

4
(n : even)

SO(n,C) SO∗(2n)/U(n)
n(n−1)

2

SU(2i, 2n− 2i) · U(1) SO∗(4n)/U(2n) n2

SU(i, 2n− i+ 1) · U(1) SO∗(4n+ 2)/U(2n+ 1) n2 + n

SO0(i, 2n− i+ 1) SO(2n+ 1,C)/SO(2n+ 1) 2n2

SO0(2i, 2n− 2i) SO(2n,C)/SO(2n)
(2n−1)2

2

U(n) Sp(n,R)/U(n) n2

SU(i, n− i) · U(1) Sp(n,R)/U(n) n2

Sp(p)× Sp(q) Sp(p, q)/Sp(p)× Sp(q)

{
p2 + p (p < q)
p2 (p = q)

SU(p, q) · U(1) Sp(p, q)/Sp(p)× Sp(q) 1
2
p(3p+ 5)

SU∗(2p) · U(1) Sp(p, p)/Sp(p)× Sp(p) 2p2

SL(n,C) · SO(2,C) Sp(n,C)/Sp(n) 2n2

Sp(n,R) Sp(n,C)/Sp(n) n2

Sp(i, n− i) Sp(n,C)/Sp(n) n2

Table 2.
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H G/K maxv∈T⊥M ♯SpecAv

Sp(4)/{±1} E6
6/(Sp(4)/{±1}) 36

Sp(4,R) E6
6/(Sp(4)/{±1}) 36

Sp(2, 2) E6
6/(Sp(4)/{±1}) 36

SU(6) · SU(2) E2
6/SU(6) · SU(2) 24

Sp(1, 3) E2
6/SU(6) · SU(2) 36

Sp(4,R) E2
6/SU(6) · SU(2) 34

SU(2, 4) · SU(2) E2
6/SU(6) · SU(2) 30

SU(3, 3) · SL(2,R) E2
6/SU(6) · SU(2) 24

Spin(10) · U(1) E−14
6 /Spin(10) · U(1) 6

Sp(2, 2) E−14
6 /Spin(10) · U(1) 10

SU(2, 4) · SU(2) E−14
6 /Spin(10) · U(1) 10

SU(1, 5) · SL(2,R) E−14
6 /Spin(10) · U(1) 10

SO∗(10) · U(1) E−14
6 /Spin(10) · U(1) 7

SO0(2, 8) · U(1) E−14
6 /Spin(10) · U(1) 10

F4 E−26
6 /F4 3

Sp(1, 3) E−26
6 /F4 6

F−20
4 E−26

6 /F4 3

E6 Ec
6/E6 36

E2
6 Ec

6/E6 36

E−14
6 Ec

6/E6 36

Sp(4,C) Ec
6/E6 72

SU(8)/{±1} E7
7/(SU(8)/{±1}) 63

SL(8,R) E7
7/(SU(8)/{±1}) 63

SU∗(8) E7
7/(SU(8)/{±1}) 63

SU(4, 4) E7
7/(SU(8)/{±1}) 63

SO′(12) · SU(2) E−5
7 /SO′(12) · SU(2) 24

SU(4, 4) E−5
7 /SO′(12) · SU(2) 36

SU(2, 6) E−5
7 /SO′(12) · SU(2) 36

SO∗(12) · SL(2,R) E−5
7 /SO′(12) · SU(2) 24

SO0(4, 8) · SU(2) E−5
7 /SO′(12) · SU(2) 24

E6 · U(1) E−25
7 /E6 · U(1) 9

SU∗(8) E−25
7 /E6 · U(1) 15

SU(2, 6) E−25
7 /E6 · U(1) 15

E−14
6 · U(1) E−25

7 /E6 · U(1) 9

E7 Ec
7/E7 63

E7
7 Ec

7/E7 63

E−5
7 Ec

7/E7 63

E−25
7 Ec

7/E7 63

SL(8,C) Ec
7/E7 126

Table 3.
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H G/K maxv∈T⊥M ♯SpecAv

SO′(16) E8
8/SO

′(16) 120

SO0(8, 8) E8
8/SO

′(16) 120

E7 · Sp(1) E−24
8 /E7 · Sp(1) 24

SO∗(16) E−24
8 /E7 · Sp(1) 36

SO0(4, 12) E−24
8 /E7 · Sp(1) 36

E−5
7 · Sp(1) E−24

8 /E7 · Sp(1) 24

E−25
7 · SL(2,R) E−24

8 /E7 · Sp(1) 24

E8 Ec
8/E8 120

E8
8 Ec

8/E8 120

E−24
8 Ec

8/E8 120

SO(16,C) Ec
8/E8 240

Sp(3) · Sp(1) F 4
4 /Sp(3) · Sp(1) 24

Sp(1, 2) · Sp(1) F 4
4 /Sp(3) · Sp(1) 24

Sp(3,R) · SL(2,R) F 4
4 /Sp(3) · Sp(1) 24

Spin(9) F−20
4 /Spin(9) 2

Sp(1, 2) · Sp(1) F−20
4 /Spin(9) 2

˜SO0(1, 8) F−20
4 /Spin(9) 4

F4 FC
4 /F4 24

F 4
4 FC

4 /F4 24

F−20
4 FC

4 /F4 24

Sp(3,C) · SL(2,C) FC
4 /F4 48

SO(4) G2
2/SO(4) 6

SL(2,R)× SL(2,R) G2
2/SO(4) 6

α(SO(4)) G2
2/SO(4) 6

G2 Gc
2/G2 6

G2
2 Gc

2/G2 6

SL(2,C)× SL(2,C) Gc
2/G2 12

Table 4.

Appendix 2

In this appendix, we prove the following important fact for a curvature-adapted
submanifold with globally flat and abelian normal bundle in a symmetric space.

Proposition A.1. Let M be a curvature-adapted submanifold with globally flat and
abelian normal bundle in a symmetric space G/K, A be the shape tensor of M and
R be the curvature tensor of G/K. Then, for any x ∈ M ,

{R(·, v)v|TxM | v ∈ T⊥
x M} ∪ {Av | v ∈ T⊥

x M}

is a commuting family of linear transformations of TxM .

Proof. We shall show this statement in the case where G/K is of non-compact type.
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Let vi ∈ T⊥
x M (i = 1, 2). Since M has abelian normal bundle, R(·, v1)v1|TxM and

R(·, v2)v2|TxM commute with each other. Since M has globally flat and abelian
normal bundle, Av1 and Av2 commute with each other. We shall show that
R(·, v1)v1|TxM and Av2 commute with each other. Let x = gK. Take a maxi-
mal abelian subspace a of p := TeK(G/K) containing b := g−1

∗ (T⊥
x M). Let △ be

the root system with respect to a and set △ := {α|b |α ∈ △ s.t. α|b ̸= 0}. For
each β ∈ △, we set pβ := {X ∈ p | ad(b)2(X) = β(b)2X (∀ b ∈ b)}. Then we
have p = zp(b) +

∑
β∈△+

pβ , where △+ is the positive root system under some

lexicographic ordering and zp(b) is the centralizer of b in p. Consider

D := {v ∈ T⊥
x M |Span{v} ∩

(
∪

(β1,β2)∈△+×△+ s.t. β1 ̸=β2

(lβ1 ∩ lβ2)

)
= ∅},

where lβi := β−1
i (1) (i = 1, 2). It is clear that D is open and dense in T⊥

x M .
Take v ∈ D. Then, since β(v)’s (β ∈ △+) are mutually distinct, the decomposition
TxM = g∗(zp(b)⊖b)+

∑
β∈△+

g∗pβ is the eigenspace decomposition of R(·, v)v|TxM .

Since M is curvature-adapted by the assumption and hence [R(·, v)v|TxM , Av] = 0,
we have

(A.6) TxM=
∑

λ∈SpecAv

(g∗(zp(b)⊖b)∩Ker(Av−λid))+
∑

β∈△+

(g∗pβ ∩Ker(Av−λ id))

 .

Suppose that (A.6) does not hold for some v0 ∈ T⊥
x M \D. Then it is easy to show

that there exists a neighborhood U of v0 in T⊥
x M such that (A.6) does not hold

for any v ∈ U . Clearly we have U ∩ D = ∅. This contradicts the fact that D is
dense in T⊥

x M . Hence (A.6) holds for any v ∈ T⊥
x M \ D. Therefore, (A.6) holds

for any v ∈ T⊥
x M . In particular, (A.6) holds for v2. On the other hand, the decom-

position TxM = g∗zp(b)+
∑

β∈△+
g∗pβ is the common eigenspace decomposition of

R(·, v)v|TxM ’s (v ∈ T⊥
x M). From these facts, we have

TxM =
∑

λ∈SpecAv2

∑
µ∈SpecR(·,v1)v1|TxM

(Ker(R(·, v1)v1|TxM − µ id) ∩Ker(Av2 − λ id)) ,

which implies that R(·, v1)v1|TxM and Av2 commute with each other. This com-
pletes the proof. 2

Remark A.1. O. Goertsches and G. Thorbergsson [10] have already shown that
the statement of this proposition holds for principal orbits of Heremann actions on
symmetric spaces of compact type.
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